COLITECHNIKA GDANSKA Spek	troskopia magnet <u>y</u>	ycznego rez	onansu jądrowego
		$S = \frac{h}{2\pi} \sqrt{k}$ gdzie: <i>I</i> – kv	(/+1) wantowa liczba spinowa jądra / = 0, ½, 1, 3/2, 2, 5/2, itd
MASA ATOMOWA (protony + neutrony)	LICZBA ATOMOWA (protony)	I	PRZYKŁADOWE JĄDRA
nieparzysta	nieparzysta	połówkowa	¹ H(1/2); ³ H(1/2); ¹⁵ N(1/2); ¹⁹ F(1/2); ³¹ P(1/2);
nieparzysta	parzysta	połówkowa	¹³ C(1/2); ¹⁷ O(1/2); ²⁹ Si(1/2);
parzysta	nieparzysta	całkowita	² H(1); ¹⁴ N(1); ³⁰ B(3);
parzysta	parzysta	0	¹² C; ¹⁶ O; ³² S
gdy /∍	é 0 jądro wykazuj	e właściwości	magnetyczne

POLITECHNIKA GDAŃSKA	Relaksacja			
	• podłużna T_1 typu spin – sieć			
		d M _z	_	$M_z - M_0$
		d t	= .	<i>T</i> ₁
	• poprzeczna <i>T</i> 2 typu spin – spi	n		
		$\frac{\mathrm{d}\boldsymbol{M}_{\boldsymbol{x}}}{\mathrm{d}\boldsymbol{t}} =$	$\frac{M_x}{T_2}$	_
		d M _y =	M _y	
		d t	T ₂	

Rozpuszczalnik	Wzór	Temperatura wrzenia, °C	Temperatura topnienia, °C	Objętościowa podatność magnetyczna, χ _v · 10 ⁸	Przesunięcie chemiczne	
					δ	τ
Tetrachlorometan	CCL	76.8	- 22,8	-0,684]
Dwusiarczek wegla	CS.	46,3	-108,5	-0,681		
Chloroform	CHCl ₃	61,3	-63,5	-0,733	7,27	2,73
Chloroform-d	CDCl ₃					1.1.1
Sulfotlenek dimetylowy	CH ₃ SOCH ₃	100	6	-0,609	2,58	7,42
Sulfotlenek de-dimetylowy	CD ₃ SOCD ₃	Π				1.0
Acetonitryl	CH ₃ CN	82	-41	-0,486	1,95	8,05
Acetonitryl-d ₃	CD ₃ CN					
Aceton	CH ₃ COCH ₃	56,5	-95	-0,460	2,05	7,95
Aceton-d ₆	CD ₃ COCD ₃					
Chlorek metylenu	CH_2Cl_2	40,1	-96,7	-0,733	5,35	4,65
1,4-Dioksan	$C_4H_8O_2$	101,5	12	-0,589	3,68	6,32
Cykloheksan	$C_{6}H_{12}$	81,4	6,5	-0,631	1,43	8,57
Benzen	C_6H_6	80,1	5,5	-0,626	7,27	2,73
Pirydyna	C_5H_5N	115,3	-42	-0,612	6,9-8,5	1,5-3,1
Woda	H_2O	100,0	0,0	-0,721	4,8	5,2
Kwas trifluorooctowy	CF ₃ COOH	72,4	-15,3	_	11,6	-1,6
Dwutlenek siarki	SO ₂		- 75,5	-0,812	_	

9

16

