Spin jądrowy		Względna czułość	Zawartość w naturalnym	ν ₀ , MHz		
	I	detekcji	pierwiastku, %	1.41 T	2.35 T	
ΊΗ	<u>1</u> 2	100	99.98	60	100	
¹⁹ F	<u>1</u> 2	83.3	100.0	56.4	94.1	

POLITECHNIKA GDANSKA	SPEKTROSKOPIA ¹³ C NMR							
	Spin jądrowy	Względn a czułość	Zawartość w naturalnym	ν_{0} , MHz				
	1	delekcji	pierwiastku, %	1.41 T	2.35 T			
	¹ H 1/2	100	99.98	60	100			
	¹⁹ F 1/2	83.3	100.0	56.4	94.1			
	¹³ C 2	1.59	1.11	15.1	25.1			

POLITECHNIKA Chemic	cząsteczki na przesunięcie czne w ¹³ C NMR
Typ atomu węgla	przesunięcie chemiczne, d [ppm]
1° alkil RCH ₃	0 - 40
2° alkil RCH₂R	10 - 50
3° alkil R₃CH	15 - 50
amina/halogenek alkilowy ≡CX (X:	Cl, Br, N) 10 – 65
alkohol/eter ≡C−O −	50 - 90
alkin –C≡	60 - 90
aryl	100 – 170
nitryle –C≡N	120 – 130
amidy –CON=	150 – 180
kwasy karboksylowe –COOH	160 – 185
aldehydy, ketony –CO–	182 – 215

POLITECHNIKA GDANSKA	Przesunięcie chemiczne w ¹³ C NMR
<u>>C=0</u>	C = C < C < C = C = 0 $C = C = 0$ $C =$
	wzorzec TMS

POLITECHNIKA GDAŇSKA	Specjalne uzysk	techniki pomiaru anie dodatkowycł	widm ¹³ C NMR, któ n informacji o atom	pre umożliwiają nach węgla
		Metoda off-res	onance decoupling	1
rejestrow częstości z żadną z	anie widma wę ą zbliżoną do c nich	glowego przy równo zęstości rezonansov	czesnym odsprzęga wej protonu, lecz celo 7	niu pojedynczą owo nie pokrywającą się
	osłab	ia się sprzężenie sp	inowe pomiędzy ¹ H- ¹³	С
		Į	}	
	rejest	trowane sprzężenie	przez jedno wiązanie	¹ J _{CH}
		Į	7	
	liczba atomóv	w wodoru powiązany	, vch z badanym jądrei	n węglowym
СН	l ₃	CH ₂	СН	C

POLITECHNIKA GDANSKA	¹³ C NMR – korelacje empiryczne
Dla alkanów	
qdzie:	$\delta(\mathbf{C}_i) = \mathbf{B} + \Sigma \mathbf{n}_j \mathbf{A}_j$
B – stała, w przybliżeniu	równa przesunięciu chemicznemu atomu węgla w CH ₄
Aj – inkrement przesuni	ęcia chemicznego dla podstawnika w pozycji α,β i γ
OKIESIOIIO, Ze	
B = -2.6	$A_{\alpha} = +9.1$
	$A_{\beta} = +9.4$
	Α _γ = -2.5
	$A_{\delta} = +0.3$

	NMR – korelacje empiryczne
^{GDANSKA} α β γ δ	$\delta = -2.5 + 9.1 + 9.4 - 2.5 + 0.3 = 13.8$
	δobs = 13.9 ppm
$ \begin{array}{ccc} \alpha & \alpha & \beta & \gamma \\ \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{3} \end{array} $	$\delta = -2.5 + (2 \times 9.1) + 9.4 - 2.5 = 22.6$
αβ αβ	δobs = 22.8 ppm
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	$\delta = -2.5 + (2 \times 9.1) + (2 \times 9.4) = 34.5$
β CH ₃	δobs = 34.7 ppm
CH ₃ —CH—CH ₃	$\delta = -2.5 + 9.1 + (2 \times 9.4) - 1.1 = 24.3$
β CH ₃	poprawki dla Me/3° i Me/4°
$CH_3 - C - CH_3$	$\delta = -2.5 + 9.1 + (3 \times 9.4) - 3.4 = 31.4$
β CH ₃	δobs = 31.7 ppm

¹³ C NMR – korelacje empiryczne Przesunięcia chemiczne ¹³ C wywołane obecnością podstawników								
Pod- stawnik	Alkeny			Alkeny		Związki aromatyczne		
	α	β	γ	α	β	α	β	γ
F	70,1	7,8	-6,8	24,9	-34,3	35,1	—14,3	0,9
Cl	31,0	10,0	-5,1	2,6	-6,1	6,4	0,2	1,0
Br	18,9	11,0	-3,8	-7,9	-1,4	-5,4	3,3	2,2
I	-7,2	10,9	-1,5	-38,1	7,0	-32,3	9,9	2,6
OR	49,0	10,1	-6,2	29,4	- 38,9	30,2	-14,7	0,9
OCOCH ₃	52,0	6,5	-6,0	-18,2	-27,1	23	-6	1 .
NR ₂	28,3	11,3	-5,1			22,4	-15,7	0,8
NO ₂	61,6	3,1	-4,6	22,3	-0,9	19,6	-5,3	0,8
CN	3,1	2,4	-3,3	-15	15	-16	3,5	0,7
СООН	20,1	2,0	-2,8	4,2	8,9	2,4	1,6	-0,1
СНО	29,9	-0,6	-2,7	13,6	13,2	9,0	1,2	1,2
CH=CH ₂	21,5	6,9	-2,1	14,8	-5,8	7,6	-1,8	-1,8
C=CH	4,4	5,6	-3;4			-6,1	3,8	0,4
C_6H_5	22,1	9,3	-2,6	12,5	-11,0	13,0	-1,1	0,5
CH ₃	9,1	9,4	-2,5	12,9	-7,4	9,3	0,6	0

POLITECHNIKA GDANSKA	Stałe sprzę	żenia ¹³ C ¹³ C [Hz] -	- ¹ J _{cc}	
H ₃ C-CH ₃	34.5			
H ₂ C=CH ₂	67.5	CH3	$X = CH_3$	36.9
HC≡CH	171.5	H₃ <mark>C-</mark> ĊX	$\rm NH_2$	37.1
		ĊH₃	ОН	39.5
			CI	40.0
Ph-H ₂ C-CH ₃		34	Br	40.2
Ph-HC=CH ₂		70		
Ph- <mark>C</mark> -CH ₃		43		
Ö				

Procesy dynamiczne w NMR
rotacja wokół wiązań formalnie pojedynczych
temperatura koalescencji – temperatura, w której zanika minimum między sygnałami
$$k_c = \frac{\pi dv}{\sqrt{2}} = 2.22 \Delta v$$

Gdzie: k_c – stała szybkości przekształcenia w temp. koalescencji
Równanie Eyring'a
 $\Delta G^{\neq} = 4.58 T_C (10.32 + log \frac{TC}{kC})$
 $\Delta G^{\neq} = \Delta H^{\neq} - T\Delta S^{\neq}$

