

	ν _(0→1)	<i>m_r×</i> 10 ²⁷ [<i>kg</i>]	к_(harm) [Nm⁻¹]
H ₂	4160	0.831	511
HD	3630	1.107	518
D ₂	2993	1.661	529
HF	3958	1.59	885
HCI	2886	1.63	482
HBr	2558	1.65	384
HI	2223	1.66	294
Cl ₂	556	29.50	324
0 ₂	1155	13.29	1143
N_2	2330	11.62	2241

POLITECHNIKA GDAŃSKA	Rezonans Fermiego
	WARUNKI, W KTÓRYCH ZACHODZĄ EFEKTYWNE ODDZIAŁYWANIA SPRZĘGAJĄCE:
1. DR	GANIA MUSZĄ MIEĆ TĘ SAMĄ SYMETRIĘ
2. KA	ŻDA Z GRUP ABSORBUJE PRZY PRAWIE TAKIEJ SAMEJ
CZĘS	TOŚCI
3. SPI	RZĘŻENIE POMIĘDZY DRGANIAMI ROZCIĄGAJĄCYMI WYMAGA
WSPC	ÓLNEGO ATOMU DRGAJĄCYCH GRUP
4. SPI	RZĘŻENIE POMIĘDZY DRGANIAMI ZGINAJĄCYMI WYMAGA
WSPC	ÓLNEGO WIĄZANIA
5. SPI	RZĘŻENIE POMIĘDZY DRGANIAMI ROZCIĄGAJĄCYMI I
ZGIN/	AJĄCYMI JEST MOŻLIWE, GDY WIĄZANIE ROZCIĄGANE TWORZY
JEDN	O Z RAMION ZMIENIAJĄCEGO SIĘ KĄTA

POLITECHNIKA GDANSKA			
	Rodzaj wiązania	Region absorpcji	
	C – C, C – O, C – N	1 300 – 800	
	C=C, C=O, C=N	1 900 – 1 500	
	C=C, C=N	2 300 – 2 500	
	C – H, O – H, N – H	3 800 – 2 700	

ECHNIKA ANSKA	n 4000 — 2500 c	rm ⁻¹
3600	O-H	ostre pasma; grupy OH nie biorące udziału w wiązaniach wodorowych
3500-3000	О-Н	szerokie pasma; grupy OH biorące udziału w wiązaniach wodorowych
	N-H	często szerokie pasma – amidy i aminy
3300	≡C-H	ostre pasma
3100-2700	C-H	różna intensywność pasm
3500-2500	COO-H	szerokie pasma; kwasy karboksylowe
2500	S-H	słabe pasma;
Region 2500	– 1900 cm ¹	
2350	CO ₂	najczęściej nie należy do próbki
2200	C≡C, C≡N	często słabe pasmo
2200-1900	X=Y=Z	silne pasmo; alleny, izocyjaniany, azydki, diazo- itp.

Region 1900 – 1500 cm ⁻¹				
1850-1650	C=O	silne pasmo		
1650-1500	C=C C=N	różna intensywność pasma		
1600	\bigcirc	często słabe pasmo		
1550	-NO ₂	silne pasmo		
Region 1	900 – 600 cm ⁻¹			
1350	-NO ₂	silne pasmo		
	-SO ₂ -	silne pasmo		
1300-1250	≡P=O	silne pasmo		
		-		
1300-1000	C-O-	silne pasmo – estry, etery i alkohole		
1300-1000 1150	C-O- SO ₂ -	silne pasmo – estry, etery i alkohole silne pasmo		
1300-1000 1150 800-750	C-O- SO ₂ -	silne pasmo – estry, etery i alkohole silne pasmo <i>o-, m-, p-</i> dipodstawione pochodne benzenu		

	С,Н & О			
	cm ⁻¹ 3500 3000 2500	2000 1800	1600 1400 120	00 1000 80
Δ	ALCOHOLS & PHENOLS		1410 MI	1200 - 900 M-S
A	v(OH) FREE v(OH) 'BONDED'		δ(ОН)	v(C-0)
				- 1050
R	ETHERS 2800		121	5 – 1050 M–S
D	v(C - H) - OCH3		v (C- C	-C) ANTISYM.
		1820 165	50 1420	
C	ETONES 2750 2000	1820 = 100	W-M	
C	ALDEHYDES V(CH) OF -C-H	v(C=0) δ(CH ₂) OF -CH ₂ -CC	
	ECTEDO	1820 - 1680	o (wii	DE RANGE)
D	LACTONES	I S		M-S
	ANHYDRIDES	ν(C =	0) v(C – O)
	3400 - 2500	1760 171		940
E	ACIDS 3520 W V(OH) DIMER	v(C = 0) v(C	(C-0) MO	NOMER Y(OH)
	V(OH), MONOMER	MONOMER	DIMER S(OH)	& DIMER DIMER
		1580	1430	
	CARBOXYLATE	S M		

Częstości drgań grup z podstawnikami izotopowymi					
	Częstość [cm ⁻¹]	Częstość izotopowa [cm ⁻¹]	Przesunięcie częstość [cm ⁻¹]		
0 – D	3 500	2 550	-950		
N – D	3 300	2 400	-900		
C – D	3 000	2 200	-800		
¹³ C–H	3 000	2 990	- 10		
¹³ C=O	1 720	1 680	- 40		
¹³ C≡N	2 350	2 300	- 50		
X – C – D	1 400	990	-500		

Materia	ały przepuszcz	ające promienio	wanie podcz	erwone	
	Granica prz	epuszczalności		Granica prze	epuszczalności
Materiał	[µm]	[cm ⁻¹]	Materiał	[µm]	[cm ⁻¹]
Szkło	2.5	4000	NaCl	20,0	500
Kwarc	4,4	2300	AgCl	28,0	360
Szafir	6,5	1500	KBr	32,0	310
LiF	7,0	1400	CsI	60,0	170
CaF ₂	10,0	1000	KRS-5	50,0	200

Materiały przepu	szczające promier	niowanie podczer	wone
M1	Granica przej	puszczalności	Rozpuszczalność
Materiał	μ m a faile	cm ⁻¹	g/100g H ₂ O (20°C)
NaCl	0,25—16	40000-625	36,0
KBr	0,25-26	40000-385	65,2
KCl	0,25-20	40000-500	34,7
CsI	0,30-50	33000-200	160,0 (61°C)
CaF ₂	0,20-9	50000-1100	$1,51 \cdot 10^{-3}$
BaF_2	0,20—13	50000-770	0,12 (25°C)
TlBr + TlI (KRS-5)	0,60-40	16600-250	$<4,76\cdot10^{-2}$
AgCl	do 28	do 360	8,9 · 10 ⁻⁵ (10°C)
AgBr	0,50—35	20000-285	1,2 · 10 ⁻⁵
ZnS (Cleartran)	1,0—14	10000-715	nierozpuszczalny
ZnSe (Irtran-4)	1,0—19,5	10000-515	nierozpuszczalny
Polietylen	16-333	625-33	nierozpuszczalny

	С,Н				•			
	cm ⁻¹ 35	500 300	0 2500	2000	1800 16	00 1400	200 1000	800
A	ALKANES	2940 2940 v(C-H) FOR	2860 5 M CH ₂ ,CH ₃		ANTISYI	1455 1380 S M. δ(CH ₂) δ(CH ₃) δ(CH ₃) SYM.	VAR. W) SKELETAL V(C-C)MODES	ETC. R
В	ALKENES	3050 W-М V (С-Н) FOF	R = CH	18 V.V 2Y(1 = 0	250 1650 W-W W-M CH) FOR CH ₂ ν(C=C)	1410 W δ(CH) FOR = CH ₂	С-н 990 М • • 970 S • - 890 MS 8201	910 p
С	AROMATIC	3050 W-M v(С-H) FC	2Y(CH)ETC. (SUI	00 - 1700 1600 N-W BSTITUTION ATTERN)	1580 1500 W-M / C=C)SKELETAL	Y (С-H S Y (С-H S S Y (С-H S S Y (С-H S S Y (С-H S S Y (С-H S S S S S S S S S S	ADJ 30 - 1 780 750 750
D	ALKYNES	3310 M v(C−H)FOR =	ν(C≡ R'C≡CR V. C−H ν(C	C) 2225 ^N = 2150 W = M ≡C)RC ≡ CH		1300 Ш 2Ŷ(С-Н)	
F	ALLENES	3080 M		1980 M-3) S		VA	R M-S

POLITECHNIKA GDAŃSKA	Wiązania wodorowe						
	międzycząs	steczkowe	wewnątrzcz	ząsteczkowe			
wiązanie X – HY	Zmiana częstości [cm ⁻¹] ν _{OH} ^{a)} ν _{C=O} ^{b)}	klasa związków	Zmiana częstości [cm ⁻¹] v _{OH} ^{a)} v _{C=0} ^{b)}	klasa związków			
słabe	300 15	alkohole, fenole i związki z między cząsteczkowymi wiązaniami OH/C=O	< 100 10	1,2-diole, α- i β- hydroksyketony, o- chloro- i o-alkoksy- fenole			
średnia moc			100–300 50	1,3-diole, niektóre β- hydroksyketony, β- hydroksyaminy, związki β-hydroksy- nitrowe			
silne	>500 50	dimery RCOOH	>300 100	ketony o-hydroksy- arylowe, kwasy o- hydroksyarylowe i ich estry, β-diketony			
a) – przes b) – drgar	sunięcie względen nia rozciągające g	n częstości wolnych gr rup CO, jeżeli występu	up ją w związku				

 Wpływ rozpuszczalników na częstość v_{C=0} Wzrost polarności rozpuszczalnika preferowana polarna struktura rezonansowa 							
faza g	azowa	czalniki	faza stała				
		niepolarne CS ₂ , CCl ₄	polarne CHCl ₃				
liczba falowa drgań v _{c=0}							
• Oddzia	aływania rozp	uszczalnik – substar	ıcja, np. wiązania	ı wodorowe			

Rozpuszczalnik	Częstość $v_{C=O}$ (cm ⁻¹)	
	acetonu	octanu metylu
Gaz	1740	1770
Heksan	1723	1.755
CCl ₄	1719	1,748.5
CS ₂	1717	1747.5
Czysta ciecz	1714	1747
CH ₃ NO ₂	1718	1740
CH ₂ Cl ₂	1713	1740.5
CHCl ₃	1712	1737.5
C ₂ H ₅ OH	1710	1750 i 1733×
× Niecałkowita asocjacja przez	worzenie wiązań wodoro	wych.

POLITECHNIKA GDANSKA			AMID	Y	
		v N-H (roztwór)		3500 i 3400 cm ⁻¹	
vI		\mathbf{v} N-H	N-H (KBr)		i 3180 cm ⁻¹
	roztwor				KBr
ν _{cis} N-H	3440 – 3	3420 cm	l-1	ν Ν- Η	1 3330 – 3060 cm ⁻¹
v _{trans} N-H	3460 – 3	3440 cm	-1		
				twór)	1700 – 1630 cm ⁻¹
l pasmo amidowe		/e	ν C=O (KB	r)	o 30 – 40 cm ⁻¹ niżej
ll pas	smo amido	we	roztwór δ N-H δ N-H	1 i 11	rzęd. 1620 – 1590 cm ⁻¹ rzęd. 1550 – 1510 cm ⁻¹
			δ N-H (KB	r)	o 20 – 40 cm ⁻¹ niżej

POLITECHNIKA GDANSKA	AMINY						
v C – N amin aromatycznych							
	l rzędowe	1340 – 1250 cm ⁻¹					
	ll rzędowe	1350 – 1280 cm ⁻¹					
	III rzędowe	1360 – 1310 cm ⁻¹					
v C – N amin alifatycznych							
1250 – 1020 cm ⁻¹							

POLITECHNIKA		SOLE AMMO	NIOWE		
	$v \operatorname{NH_4^+}$	3300 – 3030 cm	-1		
	$\delta \operatorname{NH_4^+}$	ok. 1429 cm ⁻¹			
		$\nu \text{ NH}_3^+$	3000 – 2800 cm ⁻¹		
		δ NH ₃ +	1600 – 1575 i 1550 – 1504 cm ⁻¹		
$v \operatorname{NH_2^+}$		2 ⁺ 3000 – 27	3000 – 2700 cm ⁻¹		
δ NH ₂ * 1620 – 1560 cm ⁻¹					
v	NH⁺	2700 – 2250 cm ⁻¹			
δ	δ NH ⁺ słabe, niediagnostyczne				

