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Chapter 11

INTRODUCTION TO DIFFERENTIATION

11.1. Tangent to a Curve

Consider the graph of a function y = f(x). Suppose that P (x0, y0) is a point on the curve y = f(x).
Consider now another point Q(x1, y1) on the curve close to the point P (x0, y0). We draw the line joining
the points P (x0, y0) and Q(x1, y1), and obtain the picture below.

Clearly the slope of this line is equal to

y1 − y0

x1 − x0
=

f(x1) − f(x0)
x1 − x0

.

† This chapter was written at Macquarie University in 1999.
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Now let us keep the point P (x0, y0) fixed, and move the point Q(x1, y1) along the curve towards the
point P . Eventually the line PQ becomes the tangent to the curve y = f(x) at the point P (x0, y0), as
shown in the picture below.

We are interested in the slope of this tangent line. Its value is called the derivative of the function
y = f(x) at the point x = x0, and denoted by

dy

dx

∣∣∣∣
x=x0

or f ′(x0).

In this case, we say that the function y = f(x) is differentiable at the point x = x0.

Remark. Sometimes, when we move the point Q(x1, y1) along the curve y = f(x) towards the point
P (x0, y0), the line PQ does not become the tangent to the curve y = f(x) at the point P (x0, y0). In
this case, we say that the function y = f(x) is not differentiable at the point x = x0. An example of
such a situation is given in the picture below.

Note that the curve y = f(x) makes an abrupt turn at the point P (x0, y0).



x

 y

P(x0,y0)

Q(x1,y1)

y = x2

x

 y

 4

 3

 2

 1

 1 2 -2  -1

 -1

 -2

 -3

 -4

y = x2

Chapter 11 : Introduction to Differentiation 11–3

Example 11.1.1. Consider the graph of the function y = f(x) = x2.

Here the slope of the line joining the points P (x0, y0) and Q(x1, y1) is equal to

y1 − y0

x1 − x0
=

f(x1) − f(x0)
x1 − x0

=
x2

1 − x2
0

x1 − x0
= x1 + x0.

It follows that if we move the point Q(x1, y1) along the curve towards the point P (x0, y0), then the slope
of this line will eventually be equal to x0 + x0 = 2x0. Hence for the function y = f(x) = x2, we have

dy

dx

∣∣∣∣
x=x0

= f ′(x0) = 2x0.

In particular, the tangent to the curve at the point (1, 1) has slope 2 and so has equation y = 2x − 1,
whereas the tangent to the curve at the point (−2, 4) has slope −4 and so has equation y = −4x − 4.
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Example 11.1.2. Consider the graph of the function y = f(x) = x3. Here the slope of the line joining
the points P (x0, y0) and Q(x1, y1) is equal to

y1 − y0

x1 − x0
=

f(x1) − f(x0)
x1 − x0

=
x3

1 − x3
0

x1 − x0
= x2

1 + x1x0 + x2
0.

It follows that if we move the point Q(x1, y1) along the curve towards the point P (x0, y0), then the slope
of this line will eventually be equal to x2

0 + x0x0 + x2
0 = 3x2

0. Hence for the function y = f(x) = x3, we
have

dy

dx

∣∣∣∣
x=x0

= f ′(x0) = 3x2
0.

In particular, the tangent to the curve at the point (0, 0) has slope 0 and so has equation y = 0, whereas
the tangent to the curve at the point (2, 8) has slope 12 and so has equation y = 12x − 16.

Example 11.1.3. Consider the graph of the function y = f(x) = x. Here the slope of the line joining
the points P (x0, y0) and Q(x1, y1) is equal to

y1 − y0

x1 − x0
=

f(x1) − f(x0)
x1 − x0

=
x1 − x0

x1 − x0
= 1.

It follows that if we move the point Q(x1, y1) along the curve towards the point P (x0, y0), then the slope
of this line will remain equal to 1. Hence for the function y = f(x) = x, we have

dy

dx

∣∣∣∣
x=x0

= f ′(x0) = 1.

Example 11.1.4. Consider the graph of the function y = f(x) = x1/2, defined for all real numbers
x ≥ 0. Suppose that x0 > 0 and x1 > 0. Then the slope of the line joining the points P (x0, y0) and
Q(x1, y1) is equal to

y1 − y0

x1 − x0
=

f(x1) − f(x0)
x1 − x0

=
x

1/2
1 − x

1/2
0

x1 − x0
=

1

x
1/2
1 + x

1/2
0

.

It follows that if we move the point Q(x1, y1) along the curve towards the point P (x0, y0), then the slope
of this line will eventually be equal to

1

x
1/2
0 + x

1/2
0

=
1

2x
1/2
0

=
1
2
x
−1/2
0 .

Hence for the function y = f(x) = x1/2, we have

dy

dx

∣∣∣∣
x=x0

= f ′(x0) =
1
2
x
−1/2
0 .

The above four examples are special cases of the following result.

DERIVATIVES OF POWERS. Suppose that n is a fixed non-zero real number. Then for the
function y = f(x) = xn, we have

dy

dx
= f ′(x) = nxn−1

for every real number x for which xn−1 is defined.
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Here and henceforth, we shall slightly abuse our notation and refer to f ′(x) as the derivative of the
function y = f(x), and write

dy

dx
= f ′(x).

Example 11.1.5. For the function y = f(x) = x1/4, we have

dy

dx
= f ′(x) =

1
4
x−3/4

for every positive real number x.

The rule concerning derivatives of powers does not apply in the case n = 0.

DERIVATIVES OF CONSTANTS. Suppose that f(x) = c, where c is a fixed real number. Then
f ′(x) = 0 for every real number x.

11.2. Arithmetic of Derivatives

Very often, we need to find the derivatives of complicated functions which are constant multiples, sums,
products and/or quotients of much simpler functions. To achieve this, we can make use of our knowledge
concerning the derivatives of these simpler functions. We have four extremely useful results.

CONSTANT MULTIPLE RULE. Suppose that m(x) = cf(x), where c is a fixed real number.
Then

m′(x) = cf ′(x)

for every real number x for which f ′(x) exists.

SUM RULE. Suppose that s(x) = f(x) + g(x) and d(x) = f(x) − g(x). Then

s′(x) = f ′(x) + g′(x) and d′(x) = f ′(x) − g′(x)

for every real number x for which f ′(x) and g′(x) exist.

Example 11.2.1. Consider the function h(x) = 5x2 + 3x5. We can write

h(x) = f(x) + g(x),

where f(x) = 5x2 and g(x) = 3x5. It follows from the sum rule that

h′(x) = f ′(x) + g′(x).

Next, the function f(x) = 5x2 is a constant (5) multiple of the function x2, and so it follows from the
constant multiple rule and the rule on the derivatives of powers that

f ′(x) = 5(x2)′ = 5(2x) = 10x.

Similarly, the function g(x) = 3x5 is a constant (3) multiple of the function x5, and so it follows from
the constant multiple rule and the rule on the derivatives of powers that

g′(x) = 3(x5)′ = 3(5x4) = 15x4.

Hence h′(x) = 10x + 15x4.
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Example 11.2.2. Consider the function h(x) = (3x)4 − (2x)6. We can write

h(x) = f(x) − g(x),

where f(x) = 81x4 and g(x) = 64x6. It follows from the sum rule that

h′(x) = f ′(x) − g′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = 324x3

and g′(x) = 384x5. Hence h′(x) = 324x3 − 384x5.

The sum rule can be extended to the sum or difference of more than two functions in the natural
way. We illustrate the technique in the following three examples.

Example 11.2.3. Consider the function h(x) = 4x3 − 15x2 + 4x − 1. We can write

h(x) = f(x) − g(x) + k(x) − t(x),

where f(x) = 4x3, g(x) = 15x2, k(x) = 4x and t(x) = 1. It follows from the sum rule that

h′(x) = f ′(x) − g′(x) + k′(x) − t′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = 12x2,
g′(x) = 30x and k′(x) = 4. Applying the rule on the derivatives of constants, we obtain t′(x) = 0. Hence
h′(x) = 12x2 − 30x + 4.

Example 11.2.4. Consider the function h(x) = 8x3 − 2(x + 2)2 + 3. Then h(x) = 8x3 − 2x2 − 8x− 5,
and so we can write

h(x) = f(x) − g(x) − k(x) − t(x),

where f(x) = 8x3, g(x) = 2x2, k(x) = 8x and t(x) = 5. It follows from the sum rule that

h′(x) = f ′(x) − g′(x) − k′(x) − t′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = 24x2,
g′(x) = 4x and k′(x) = 8. Applying the rule on the derivatives of constants, we obtain t′(x) = 0. Hence
h′(x) = 24x2 − 4x − 8.

Example 11.2.5. Consider the function h(x) = (x2 + 2x)2. Then h(x) = x4 + 4x3 + 4x2, and so we
can write

h(x) = f(x) + g(x) + k(x),

where f(x) = x4, g(x) = 4x3 and k(x) = 4x2. It follows from the sum rule that

h′(x) = f ′(x) + g′(x) + k′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = 4x3,
g′(x) = 12x2 and k′(x) = 8x. Hence h′(x) = 4x3 + 12x2 + 8x.

Example 11.2.6. Consider the function

h(x) =
3
x

+ 2x.

We can write
h(x) = f(x) + g(x),
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where f(x) = 3x−1 and g(x) = 2x. It follows from the sum rule that

h′(x) = f ′(x) + g′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = −3x−2

and g′(x) = 2. Hence h′(x) = 2 − 3x−2.

Example 11.2.7. Consider the function

h(x) = 6x2
√

x − 4√
x

+ 3x1/3.

We can write
h(x) = f(x) − g(x) + k(x),

where f(x) = 6x5/2, g(x) = 4x−1/2 and k(x) = 3x1/3. It follows from the sum rule that

h′(x) = f ′(x) − g′(x) + k′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain f ′(x) = 15x3/2,
g′(x) = −2x−3/2 and k′(x) = x−2/3. Hence h′(x) = 15x3/2 + 2x−3/2 + x−2/3.

Example 11.2.8. Consider the function h(x) =
√

3x + 3
√

2x. We can write

h(x) = f(x) + g(x),

where f(x) =
√

3x1/2 and g(x) = 3
√

2x1/3. It follows from the sum rule that

h′(x) = f ′(x) + g′(x).

Applying the constant multiple rule and the rule on the derivatives of powers, we obtain

f ′(x) =
√

3
2

x−1/2 and g′(x) =
3
√

2
3

x−2/3.

Hence

h′(x) =
√

3
2

x−1/2 +
3
√

2
3

x−2/3 =

√
3
4x

+ 3

√
2

27x2
.

PRODUCT RULE. Suppose that p(x) = f(x)g(x). Then

p′(x) = f ′(x)g(x) + f(x)g′(x)

for every real number x for which f ′(x) and g′(x) exist.

Example 11.2.9. Consider the function h(x) = (x3 − x5)(x2 + x4). We can write

h(x) = f(x)g(x),

where f(x) = x3 − x5 and g(x) = x2 + x4. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Applying the sum rule and the rule on the derivatives of powers, we obtain f ′(x) = 3x2 − 5x4 and
g′(x) = 2x + 4x3. Hence

h′(x) = (3x2 − 5x4)(x2 + x4) + (x3 − x5)(2x + 4x3) = 5x4 − 9x8.

Alternatively, we observe that h(x) = (x3 − x5)(x2 + x4) = x5 − x9. Applying the sum rule and the rule
on the derivatives of powers, we obtain h′(x) = 5x4 − 9x8 as before.
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Example 11.2.10. Let us return to Example 11.2.5 and consider again the function h(x) = (x2 +2x)2.
We can write

h(x) = f(x)g(x),

where f(x) = g(x) = x2 + 2x. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Applying the sum rule, the constant multiple rule and the rule on the derivatives of powers, we obtain
f ′(x) = g′(x) = 2x + 2. Hence

h′(x) = (2x + 2)(x2 + 2x) + (x2 + 2x)(2x + 2) = 2(2x + 2)(x2 + 2x) = 4x3 + 12x2 + 8x

as before. We shall return to example again in Section 12.1.

Example 11.2.11. Consider the function h(x) = (x2 + x)(x3 − 6x2 + 2x). We can write

h(x) = f(x)g(x),

where f(x) = x2 + x and g(x) = x3 − 6x2 + 2x. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Applying the sum rule, the constant multiple rule and the rule on the derivatives of powers, we obtain
f ′(x) = 2x + 1 and g′(x) = 3x2 − 12x + 2. Hence

h′(x) = (2x + 1)(x3 − 6x2 + 2x) + (x2 + x)(3x2 − 12x + 2).

Example 11.2.12. Consider the function

h(x) = (x +
√

x)
(

x − 1√
x

)
.

We can write
h(x) = f(x)g(x),

where f(x) = x + x1/2 and g(x) = x − x−1/2. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Applying the sum rule and the rule on the derivatives of powers, we obtain

f ′(x) = 1 +
1
2
x−1/2 and g′(x) = 1 +

1
2
x−3/2.

Hence

h′(x) =
(

1 +
1
2
x−1/2

)
(x − x−1/2) + (x + x1/2)

(
1 +

1
2
x−3/2

)

=
(

x − x−1/2 +
1
2
x1/2 − 1

2
x−1

)
+

(
x +

1
2
x−1/2 + x1/2 +

1
2
x−1

)

= 2x +
3
2
x1/2 − 1

2
x−1/2.

Alternatively, we observe that h(x) = (x + x1/2)(x − x−1/2) = x2 − x1/2 + x3/2 − 1. Applying the sum
rule and the rules on the derivatives of powers and constants, we obtain

h′(x) = 2x − 1
2
x−1/2 +

3
2
x1/2

as before.
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The product rule can be extended to the product of more than two functions. The extension is at
first sight somewhat less obvious than in the case of the sum rule. However, with a bit of care, it is in
fact rather straightforward.

Example 11.2.13. Consider the function h(x) = (x2 + 4x)(2x + 1)(6 − 2x2). We can write

h(x) = f(x)r(x),

where f(x) = x2 + 4x and r(x) = (2x + 1)(6 − 2x2). It follows from the product rule that

h′(x) = f ′(x)r(x) + f(x)r′(x).

We can now write
r(x) = g(x)k(x),

where g(x) = 2x + 1 and k(x) = 6 − 2x2. It follows from the product rule that

r′(x) = g′(x)k(x) + g(x)k′(x).

Hence h(x) = f(x)g(x)k(x), and

h′(x) = f ′(x)g(x)k(x) + f(x)g′(x)k(x) + f(x)g(x)k′(x).

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain f ′(x) = 2x + 4, g′(x) = 2 and k′(x) = −4x. Hence

h′(x) = (2x + 4)(2x + 1)(6 − 2x2) + 2(x2 + 4x)(6 − 2x2) − 4x(x2 + 4x)(2x + 1).

Remark. The interested reader is challenged to show that if p(x) = f(x)g(x)k(x)t(x), then

p′(x) = f ′(x)g(x)k(x)t(x) + f(x)g′(x)k(x)t(x) + f(x)g(x)k′(x)t(x) + f(x)g(x)k(x)t′(x).

QUOTIENT RULE. Suppose that q(x) = f(x)/g(x). Then

q′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)

for every real number x for which f ′(x) and g′(x) exist, and for which g(x) �= 0.

Example 11.2.14. Consider the function

h(x) =
x2 − 1
x3 + 2x

.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = x2 − 1 and g(x) = x3 + 2x. It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain f ′(x) = 2x and g′(x) = 3x2 + 2. Hence

h′(x) =
2x(x3 + 2x) − (x2 − 1)(3x2 + 2)

(x3 + 2x)2
.
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Example 11.2.15. Consider the function

h(x) =
4x2 + 1

3x
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = 4x2 + 1 and g(x) = 3x. It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain f ′(x) = 8x and g′(x) = 3. Hence

h′(x) =
24x2 − 3(4x2 + 1)

9x2
.

Example 11.2.16. Consider the function

h(x) =
3x2 + 4x7

5x−2 + 3
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = 3x2 + 4x7 and g(x) = 5x−2 + 3. It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain f ′(x) = 6x + 28x6 and g′(x) = −10x−3. Hence

h′(x) =
(5x−2 + 3)(6x + 28x6) + 10x−3(3x2 + 4x7)

(5x−2 + 3)2
=

30x−1 + 140x4 + 18x + 84x6 + 30x−1 + 40x4

25x−4 + 30x−2 + 9

=
60x−1 + 18x + 180x4 + 84x6

25x−4 + 30x−2 + 9
× x4

x4
=

60x3 + 18x5 + 180x8 + 84x10

25 + 30x2 + 9x4
.

Alternatively, we observe that

h(x) =
3x2 + 4x7

5x−2 + 3
× x2

x2
=

3x4 + 4x9

5 + 3x2
.

We can write

h(x) =
k(x)
t(x)

,

where k(x) = 3x4 + 4x9 and t(x) = 5 + 3x2. It follows from the quotient rule that

h′(x) =
t(x)k′(x) − k(x)t′(x)

t2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain k′(x) = 12x3 + 36x8 and g′(x) = 6x. Hence

h′(x) =
(5 + 3x2)(12x3 + 36x8) − 6x(3x4 + 4x9)

(5 + 3x2)2
=

60x3 + 36x5 + 180x8 + 108x10 − 18x5 − 24x10

25 + 30x2 + 9x4

=
60x3 + 18x5 + 180x8 + 84x10

25 + 30x2 + 9x4

as before.
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Example 11.2.17. Consider the function

h(x) =
(x2 + 4)(x − 2)

x2 + 2
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = (x2 + 4)(x − 2) and g(x) = x2 + 2. It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

We can now write
f(x) = k(x)t(x),

where k(x) = x2 + 4 and t(x) = x − 2. It follows from the product rule that

f ′(x) = k′(x)t(x) + k(x)t′(x).

Hence

h(x) =
k(x)t(x)

g(x)
,

and

h′(x) =
g(x)k′(x)t(x) + g(x)k(x)t′(x) − k(x)t(x)g′(x)

g2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain k′(x) = 2x, t′(x) = 1 and g′(x) = 2x. Hence

h′(x) =
2x(x2 + 2)(x − 2) + (x2 + 2)(x2 + 4) − 2x(x2 + 4)(x − 2)

(x2 + 2)2
=

x4 + 2x2 + 8x + 8
(x2 + 2)2

.

Alternatively, we observe that

f(x) = (x2 + 4)(x − 2) = x3 − 2x2 + 4x − 8.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain f ′(x) = 3x2 − 4x + 4. Hence

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
=

(x2 + 2)(3x2 − 4x + 4) − 2x(x3 − 2x2 + 4x − 8)
(x2 + 2)2

=
x4 + 2x2 + 8x + 8

(x2 + 2)2

as before.

For those who want a small challenge, here is one more example.

Example 11.2.18. Consider the function

h(x) =
(4x − 3)(2x2 − 3x)
(2x + 2)(x3 + 6)

.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = (4x − 3)(2x2 − 3x) and g(x) = (2x + 2)(x3 + 6). It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.
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We can now write
f(x) = k(x)t(x) and g(x) = u(x)v(x),

where k(x) = 4x− 3, t(x) = 2x2 − 3x, u(x) = 2x + 2 and v(x) = x3 + 6. It follows from the product rule
that

f ′(x) = k′(x)t(x) + k(x)t′(x) and g′(x) = u′(x)v(x) + u(x)v′(x).

Hence

h(x) =
k(x)t(x)
u(x)v(x)

,

and

h′(x) =
u(x)v(x)k′(x)t(x) + u(x)v(x)k(x)t′(x) − k(x)t(x)u′(x)v(x) − k(x)t(x)u(x)v′(x)

u2(x)v2(x)

=
u(x)v(x)k′(x)t(x) + u(x)v(x)k(x)t′(x)

u2(x)v2(x)
− k(x)t(x)u′(x)v(x) + k(x)t(x)u(x)v′(x)

u2(x)v2(x)
.

Applying the sum rule, the constant multiple rule and the rules on the derivatives of powers and con-
stants, we obtain k′(x) = 4, t′(x) = 4x − 3, u′(x) = 2 and v′(x) = 3x2. Hence

h′(x) =
4(2x + 2)(x3 + 6)(2x2 − 3x) + (2x + 2)(x3 + 6)(4x − 3)2

(2x + 2)2(x3 + 6)2

− 2(4x − 3)(2x2 − 3x)(x3 + 6) + 3x2(4x − 3)(2x2 − 3x)(2x + 2)
(2x + 2)2(x3 + 6)2

.

11.3. Derivatives of the Trigonometric Functions

Consider the curve y = f(x) = sinx. Suppose that P (x, f(x)) is a point on this curve. Consider another
point Q(x + h, f(x + h)), where h �= 0, which also lies on this curve. Clearly the slope of the line joining
the two points P and Q is equal to

f(x + h) − f(x)
(x + h) − x

=
sin(x + h) − sinx

h
.

Consider the curve y = g(x) = cos x. Suppose that R(x, g(x)) is a point on this curve. Consider another
point S(x + h, g(x + h)), where h �= 0, which also lies on this curve. Clearly the slope of the line joining
the two points R and S is equal to

g(x + h) − g(x)
(x + h) − x

=
cos(x + h) − cos x

h
.

We now move the point Q along the curve y = f(x) = sinx towards the point P , and move the point S
along the curve y = g(x) = cos x towards the point R. Recall Example 3.3.9, that when h is very close
to 0, we have

sin(x + h) − sinx

h
≈ cos x and

cos(x + h) − cos x

h
≈ − sinx.

We have established the first two parts of the result below.

DERIVATIVES OF THE TRIGONOMETRIC FUNCTIONS.
(a) If f(x) = sinx, then f ′(x) = cos x.
(b) If g(x) = cos x, then g′(x) = − sin x.
(c) If t(x) = tanx, then t′(x) = sec2 x.
(d) If t(x) = cot x, then t′(x) = − csc2 x.
(e) If t(x) = sec x, then t′(x) = tanx sec x.
(f) If t(x) = csc x, then t′(x) = − cot x csc x.



Chapter 11 : Introduction to Differentiation 11–13

Proof. The proofs of parts (c)–(f) depend on the quotient rule as well as parts (a) and (b). For the
sake of convenience, we use the functions f(x) = sinx and g(x) = cos x throughout this proof, as well
as the function c(x) = 1, with c′(x) = 0.

(c) Suppose that t(x) = tanx. Then t(x) = f(x)/g(x). It follows from the quotient rule that

t′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
=

cos2 x + sin2 x

cos2 x
=

1
cos2 x

= sec2 x.

(d) Suppose that t(x) = cot x. Then t(x) = g(x)/f(x). It follows from the quotient rule that

t′(x) =
f(x)g′(x) − g(x)f ′(x)

f2(x)
=

− sin2 x − cos2 x

sin2 x
= − 1

sin2 x
= − csc2 x.

(e) Suppose that t(x) = sec x. Then t(x) = c(x)/g(x). It follows from the quotient rule that

t′(x) =
g(x)c′(x) − c(x)g′(x)

g2(x)
=

sinx

cos2 x
=

sinx

cos x
× 1

cos x
= tanx sec x.

(f) Suppose that t(x) = csc x. Then t(x) = c(x)/f(x). It follows from the quotient rule that

t′(x) =
f(x)c′(x) − c(x)f ′(x)

f2(x)
= − cos x

sin2 x
= −cos x

sinx
× 1

sinx
= − cot x csc x. ♣

We next combine our knowledge on trigonometric functions with the arithmetic of derivatives. The
reader is advised to identify the rules used at each step in the following examples.

Example 11.3.1. Consider the function h(x) = (x3 − 2)(sinx + cos x). We can write

h(x) = f(x)g(x),

where f(x) = x3 − 2 and g(x) = sinx + cos x. It follows that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Observe next that f ′(x) = 3x2 and g′(x) = cos x − sinx. Hence

h′(x) = 3x2(sinx + cos x) + (x3 − 2)(cos x − sinx).

Example 11.3.2. Consider the function

h(x) =
sinx

x
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = sinx and g(x) = x. It follows that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

Observe next that f ′(x) = cos x and g′(x) = 1. Hence

h′(x) =
x cos x − sinx

x2
.
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Example 11.3.3. Consider the function h(x) = sin2 x. We can write

h(x) = f(x)g(x),

where f(x) = g(x) = sinx. It follows that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Observe next that f ′(x) = g′(x) = cos x. Hence

h′(x) = cos x sinx + sinx cos x = 2 sinx cos x.

Example 11.3.4. Consider the function y = sin 2x. We can write

h(x) = 2f(x)g(x),

where f(x) = sinx and g(x) = cos x. It follows that

h′(x) = 2(f ′(x)g(x) + f(x)g′(x)).

Observe next that f ′(x) = cos x and g′(x) = − sinx. Hence

h′(x) = 2(cos2 x − sin2 x) = 2 cos 2x.

We shall return to Examples 11.3.3 and 11.3.4 in Section 12.1.

Example 11.3.5. Consider the function

h(x) =
cos x

x2 − x
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = cos x and g(x) = x2 − x. It follows that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

Observe next that f ′(x) = − sinx and g′(x) = 2x − 1. Hence

h′(x) =
(x − x2) sinx − (2x − 1) cos x

(x2 − x)2
.

Example 11.3.6. Consider the function

h(x) =
sinx + cos x

1 − x4
.

We can write

h(x) =
f(x)
g(x)

,

where f(x) = sinx + cos x and g(x) = 1 − x4. It follows that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.
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Observe next that f ′(x) = cos x − sinx and g′(x) = −4x3. Hence

h′(x) =
(1 − x4)(cos x − sinx) + 4x3(sinx + cos x)

(1 − x4)2
.

Example 11.3.7. Consider the function

h(x) =
(

x2 + 1
cos x

)
sinx.

We can write
h(x) = f(x)g(x),

where

f(x) =
x2 + 1
cos x

and g(x) = sinx.

It follows that
h′(x) = f ′(x)g(x) + f(x)g′(x).

We can also write

f(x) =
k(x)
t(x)

,

where k(x) = x2 + 1 and t(x) = cos x. It follows that

f ′(x) =
t(x)k′(x) − k(x)t′(x)

t2(x)
,

and so

h′(x) =
t(x)k′(x) − k(x)t′(x)

t2(x)
g(x) +

k(x)
t(x)

g′(x).

Observe next that k′(x) = 2x, t′(x) = − sinx and g′(x) = cos x. Hence

h′(x) =
(

2x cos x + (x2 + 1) sinx

cos2 x

)
sinx +

(
x2 + 1
cos x

)
cos x

= 2x tanx + (x2 + 1) tan2 x + (x2 + 1) = 2x tanx + (x2 + 1) sec2 x.

Alternatively, we observe that h(x) = (x2 + 1) tanx. We can write

h(x) = u(x)v(x),

where u(x) = x2 + 1 and v(x) = tanx. It follows that

h′(x) = u′(x)v(x) + u(x)v′(x).

Observe next that u′(x) = 2x and v′(x) = sec2 x. Hence h′(x) = 2x tanx + (x2 + 1) sec2 x as before.

Example 11.3.8. Consider the function h(x) = sin2 x + cos2 x. We can write

h(x) = f(x)g(x) + k(x)t(x),

where f(x) = g(x) = sinx and k(x) = t(x) = cos x. It follows that

h′(x) = f ′(x)g(x) + f(x)g′(x) + u′(x)v(x) + u(x)v′(x).
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Observe next that f ′(x) = g′(x) = cos x and k′(x) = t′(x) = − sinx. Hence

h′(x) = cos x sinx + sinx cos x − sinx cos x − cos x sinx = 0.

A far simpler way to obtain the same result is to merely observe that h(x) = 1.

Problems for Chapter 11

1. For each of the following functions f(x), write down the derivative f ′(x) as a function of x, and find
the slope of the tangent at the point P (1, f(1)):

a) f(x) = x4 b) f(x) = 5x2 c) f(x) =
1
6
x−3 d) f(x) = πx1.5

2. Find the derivative of each of the following functions, using the rules concerning the derivatives of
powers, constants and sums:
a) h(x) = 6x3 b) h(x) = 5x−7

c) h(x) = 12x − 3x2 d) h(x) = x3 + 4x
e) h(x) = 6x2 − 40x f) h(x) = x7 + 6x5 − 8x2 + 3x

g) h(x) = − 3
x

h) h(x) =
7
x6

i) h(x) =
6
x2

j) h(x) = x3 + 3x − 5
x3

k) h(x) = x2 − 10x + 100 +
4
x

l) h(x) = x100 + 50x + 1 − 2x−3 + 7x−6

m) h(x) = πx3 − π2

x6
n) h(x) = x2(x3 + 3x)

o) h(x) = (x2 + 3)(2x − 5) p) h(x) = −5
√

x

q) h(x) =
√

x

x3
r) h(x) =

√
3x

s) h(x) =
√

4x +

√
4
x

t) h(x) = x5 + 6x−3/2

3. Find the derivative of each of the following functions, using the rules concerning the derivatives of
powers, constants, sums and products as appropriate:
a) h(x) = (x2 + 3)(2x − 5) b) h(x) = (x2 − x + 2)(x2 − 2)
c) h(x) = (x2 + 5)(x3 − 4x2) d) h(x) = (x4 − 3x3 + 2x)(3x2 + 4x)
e) h(x) = (x9 + 2x3)x−4 f) h(x) = (x4 − 2x3 + 7x + 8)2

g) h(x) = x2/3(x + 2) h) h(x) = (x + 3)(x − 5)(x2 − 4)
i) h(x) = x1/2(x3 + x − 2)(3x + 1) j) h(x) = x(x − 1)(x − 2)

4. Find the derivative of each of the following functions, using the rules concerning the derivatives of
powers, constants, sums, products and quotients as appropriate:

a) h(x) =
1

x4 + x3 + 1
b) h(x) = 1 +

3
x
− 2

x2
c) h(x) =

x − 2
x + 1

d) h(x) =
1 + x2

1 − x2
e) h(x) =

√
x − 1√
x + 1

f) h(x) =
x

x + x−1

g) h(x) =
2x + 3
3x + 2

h) h(x) =
2x + 1
x − 1

− ∗ − ∗ − ∗ − ∗ − ∗ −


