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Chapter 12

FURTHER TECHNIQUES OF

DIFFERENTIATION

12.1. The Chain Rule

We begin by re-examining a few examples discussed in the previous chapter.

Example 12.1.1. Recall Examples 11.2.5 and 11.2.10, that for the function

y = h(x) = (x2 + 2x)2,

we have
dy

dx
= h′(x) = 4x3 + 12x2 + 8x.

On the other hand, we can build a chain and describe the function y = h(x) by writing

y = g(u) = u2 and u = f(x) = x2 + 2x.

Note that
dy

du
= 2u and

du

dx
= 2x + 2,

so that
dy

du
× du

dx
= 2u(2x + 2) = 2(x2 + 2x)(2x + 2) = 4x3 + 12x2 + 8x.

† This chapter was written at Macquarie University in 1999.
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Example 12.1.2. Recall Example 11.3.3, that for the function

y = h(x) = sin2 x,

we have
dy

dx
= h′(x) = 2 sinx cos x.

On the other hand, we can build a chain and describe the function y = h(x) by writing

y = g(u) = u2 and u = f(x) = sinx.

Note that
dy

du
= 2u and

du

dx
= cos x,

so that
dy

du
× du

dx
= 2u cos x = 2 sinx cos x.

Example 12.1.3. Recall Example 11.3.4, that for the function

y = h(x) = sin 2x,

we have
dy

dx
= h′(x) = 2 cos 2x.

On the other hand, we can build a chain and describe the function y = h(x) by writing

y = g(u) = sinu and u = f(x) = 2x.

Note that
dy

du
= cos u and

du

dx
= 2,

so that
dy

du
× du

dx
= 2 cos u = 2 cos 2x.

In these three examples, we consider functions of the form y = h(x) which can be described in a
chain by y = g(u) and u = f(x), where u is some intermediate variable. Suppose that x0, x1 ∈ R. Write
u0 = f(x0) and u1 = f(x1), and write y0 = g(u0) and y1 = g(u1). Then clearly h(x0) = g(f(x0)) and
h(x1) = g(f(x1)). Heuristically, we have

h(x1) − h(x0)
x1 − x0

=
y1 − y0

x1 − x0
=

y1 − y0

u1 − u0
× u1 − u0

x1 − x0
=

g(u1) − g(u0)
u1 − u0

× f(x1) − f(x0)
x1 − x0

.

If x1 is close to x0, then we expect that u1 is close to u0, and so the product

g(u1) − g(u0)
u1 − u0

× f(x1) − f(x0)
x1 − x0

is close to g′(u0)f ′(x0), while the product

h(x1) − h(x0)
x1 − x0

is close to h′(x0). It is therefore not unreasonable to expect the following result, although a formal proof
is somewhat more complicated.
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CHAIN RULE. Suppose that y = g(u) and u = f(x). Then

dy

dx
=

dy

du
× du

dx
,

provided that the two derivatives on the right hand side exist.

We can interpret the rule in the following way. As we vary x, the value u = f(x) changes at the
rate of du/dx. This change in the value of u = f(x) in turn causes a change in the value of y = g(u) at
the rate of dy/du.

Example 12.1.4. Consider the function y = h(x) = (x2 − 6x + 5)3. We can set up a chain by writing

y = g(u) = u3 and u = f(x) = x2 − 6x + 5.

Clearly we have
dy

du
= 3u2 and

du

dx
= 2x − 6,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 3u2(2x − 6) = 6(x2 − 6x + 5)2(x − 3).

Example 12.1.5. Consider the function y = h(x) = sin4 x. We can set up a chain by writing

y = g(u) = u4 and u = f(x) = sinx.

Clearly we have
dy

du
= 4u3 and

du

dx
= cos x,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 4u3 cos x = 4 sin3 x cos x.

Example 12.1.6. Consider the function y = h(x) = sec(x4). We can set up a chain by writing

y = g(u) = sec u and u = f(x) = x4.

Clearly we have
dy

du
= tanu sec u and

du

dx
= 4x3,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 4x3 tanu sec u = 4x3 tan(x4) sec(x4).

Example 12.1.7. Consider the function y = h(x) = tan(x2−3x+4). We can set up a chain by writing

y = g(u) = tanu and u = f(x) = x2 − 3x + 4.

Clearly we have
dy

du
= sec2 u and

du

dx
= 2x − 3,
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so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= (2x − 3) sec2 u = (2x − 3) sec2(x2 − 3x + 4).

Example 12.1.8. Consider the function y = h(x) = (x2 +5x−1)2/3. We can set up a chain by writing

y = g(u) = u2/3 and u = f(x) = x2 + 5x − 1.

Clearly we have
dy

du
=

2
3
u−1/3 and

du

dx
= 2x + 5,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
=

2
3
u−1/3(2x + 5) =

2
3
(x2 + 5x − 1)−1/3(2x + 5).

Example 12.1.9. Consider the function

y = h(x) =
1

cos3 x
.

We can set up a chain by writing

y = g(u) =
1
u3

= u−3 and u = f(x) = cos x.

Clearly we have
dy

du
= −3u−4 and

du

dx
= − sinx,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 3u−4 sinx =

3 sinx

u4
=

3 sinx

cos4 x
.

Example 12.1.10. Consider the function

y = h(x) =
1

(2x3 − 5x + 1)4
.

We can set up a chain by writing

y = g(u) =
1
u4

= u−4 and u = f(x) = 2x3 − 5x + 1.

Clearly we have
dy

du
= −4u−5 and

du

dx
= 6x2 − 5,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 4u−5(5 − 6x2) =

4(5 − 6x2)
u5

=
4(5 − 6x2)

(2x3 − 5x + 1)5
.
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Example 12.1.11. Consider the function y = h(x) = sin(cos x). We can set up a chain by writing

y = g(u) = sinu and u = f(x) = cos x.

Clearly we have
dy

du
= cos u and

du

dx
= − sinx,

so it follows from the chain rule that
dy

dx
=

dy

du
× du

dx
= − cos u sinx = − cos(cos x) sinx.

Example 12.1.12. Consider the function

y = h(x) =
1

2(x + 1)
+

1
4(x + 1)2

.

We can set up a chain by writing

y = g(u) =
1
2u

+
1

4u2
=

1
2
u−1 +

1
4
u−2 and u = f(x) = x + 1.

Clearly we have
dy

du
= −1

2
u−2 − 1

2
u−3 and

du

dx
= 1,

so it follows from the chain rule that
dy

dx
=

dy

du
× du

dx
= −1

2
u−2 − 1

2
u−3 = − 1

2(x + 1)2
− 1

2(x + 1)3
.

Example 12.1.13. Consider the function

y = h(x) =
(

x − 1
x + 1

)3

.

We can set up a chain by writing

y = g(u) = u3 and u = f(x) =
x − 1
x + 1

.

Clearly we have (using the quotient rule for the latter)

dy

du
= 3u2 and

du

dx
=

2
(x + 1)2

,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 3u2 × 2

(x + 1)2
= 3

(
x − 1
x + 1

)2

× 2
(x + 1)2

=
6(x − 1)2

(x + 1)4
.

The chain rule can be extended to chains of more than two functions. We illustrate the ideas by
considering the next four examples.

Example 12.1.14. Consider the function y = h(x) = sin3(x2 + 2). We can set up a chain by writing

y = k(v) = v3, v = g(u) = sinu and u = f(x) = x2 + 2.

Clearly we have
dy

dv
= 3v2,

dv

du
= cos u and

du

dx
= 2x,

so it follows from the chain rule that
dy

dx
=

dy

dv
× dv

du
× du

dx
= 6xv2 cos u = 6x sin2 u cos u = 6x sin2(x2 + 2) cos(x2 + 2).
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Example 12.1.15. Consider the function y = h(x) = (1 + (1 + x)1/2)5. We can set up a chain by
writing

y = k(v) = v5, v = g(u) = 1 + u1/2 and u = f(x) = 1 + x.

Clearly we have
dy

dv
= 5v4,

dv

du
=

1
2
u−1/2 and

du

dx
= 1,

so it follows from the chain rule that

dy

dx
=

dy

dv
× dv

du
× du

dx
=

5
2
v4u−1/2 =

5
2
(1 + u1/2)4u−1/2 =

5(1 + (1 + x)1/2)4

2(1 + x)1/2
.

Example 12.1.16. Consider the function y = h(x) = tan((x4 − 3x)3). We can set up a chain by
writing

y = k(v) = tan v, v = g(u) = u3 and u = f(x) = x4 − 3x.

Clearly we have
dy

dv
= sec2 v,

dv

du
= 3u2 and

du

dx
= 4x3 − 3,

so it follows from the chain rule that

dy

dx
=

dy

dv
× dv

du
× du

dx
= 3u2(4x3 − 3) sec2 v = 3u2(4x3 − 3) sec2(u3)

= 3(x4 − 3x)2(4x3 − 3) sec2((x4 − 3x)3).

Example 12.1.17. Consider the function y = h(x) =
√

x2 + sin(x2). We can set up a chain by writing

y = k(v) = v1/2, v = g(u) = u + sinu and u = f(x) = x2.

Clearly we have
dy

dv
=

1
2v1/2

,
dv

du
= 1 + cos u and

du

dx
= 2x,

so it follows from the chain rule that

dy

dx
=

dy

dv
× dv

du
× du

dx
=

x(1 + cos u)
v1/2

=
x(1 + cos u)
(u + sinu)1/2

=
x(1 + cos(x2))√

x2 + sin(x2)
.

We conclude this section by studying three examples where the chain rule is used only in part of
the argument. These examples are rather hard, and the reader is advised to concentrate on the ideas
and not to get overly worried about the arithmetic details. For accuracy, it is absolutely crucial that we
exercise great care.

Example 12.1.18. Consider the function y = h(x) = (x2 − 1)1/2(x2 + 4x + 3). We can write

h(x) = f(x)g(x),

where
f(x) = (x2 − 1)1/2 and g(x) = x2 + 4x + 3.

It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).
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It is easy to see that g′(x) = 2x + 4. To find f ′(x), we shall use the chain rule. Let

z = f(x) = (x2 − 1)1/2.

We can set up a chain by writing

z = u1/2 and u = x2 − 1.

Clearly we have
dz

du
=

1
2u1/2

and
du

dx
= 2x,

so it follows from the chain rule that

f ′(x) =
dz

dx
=

dz

du
× du

dx
=

x

u1/2
=

x

(x2 − 1)1/2
.

Hence

h′(x) =
x(x2 + 4x + 3)

(x2 − 1)1/2
+ (x2 − 1)1/2(2x + 4).

Example 12.1.19. Consider the function

y = h(x) =
(1 − x3)2

(1 + 2x + 3x2)2
.

We can write

h(x) =
f(x)
g(x)

,

where
f(x) = (1 − x3)2 and g(x) = (1 + 2x + 3x2)2.

It follows from the quotient rule that

h′(x) =
g(x)f ′(x) − f(x)g′(x)

g2(x)
.

To find f ′(x) and g′(x), we shall use the chain rule. Let

z = f(x) = (1 − x3)2 and w = g(x) = (1 + 2x + 3x2)2.

We can set up a chain by writing

z = u2 and u = 1 − x3.

Then

f ′(x) =
dz

dx
=

dz

du
× du

dx
= 2u × (−3x2) = −6ux2 = −6(1 − x3)x2.

Similarly, we can set up a chain by writing

w = v2 and v = 1 + 2x + 3x2.

Then

g′(x) =
dw

dx
=

dw

dv
× dv

dx
= 2v × (2 + 6x) = 4v(1 + 3x) = 4(1 + 2x + 3x2)(1 + 3x).
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Hence

h′(x) =
−6(1 + 2x + 3x2)2(1 − x3)x2 − 4(1 − x3)2(1 + 2x + 3x2)(1 + 3x)

(1 + 2x + 3x2)4

= −6(1 + 2x + 3x2)(1 − x3)x2 + 4(1 − x3)2(1 + 3x)
(1 + 2x + 3x2)3

.

Alternatively, observe that we can set up a chain by writing

y = s2 and s =
1 − x3

1 + 2x + 3x2
.

Clearly we have (using the quotient rule for the latter)

dy

ds
= 2s and

ds

dx
=

−3(1 + 2x + 3x2)x2 − (1 − x3)(2 + 6x)
(1 + 2x + 3x2)2

,

so it follows from the chain rule that

dy

dx
=

dy

ds
× ds

dx
= −2s × 3(1 + 2x + 3x2)x2 + (1 − x3)(2 + 6x)

(1 + 2x + 3x2)2

= − 2(1 − x3)
1 + 2x + 3x2

× 3(1 + 2x + 3x2)x2 + 2(1 − x3)(1 + 3x)
(1 + 2x + 3x2)2

.

It can be easily checked that the answer is the same as before.

Example 12.1.20. Consider the function y = h(x) = (x2 + (x3 + x5)7)11. We can set up a chain by
writing

y = g(u) = u11 and u = f(x) = x2 + (x3 + x5)7.

Clearly we have
dy

du
= 11u10.

On the other hand, we have f(x) = k(x) + t(x), where k(x) = x2 and t(x) = (x3 + x5)7. It follows that
f ′(x) = k′(x) + t′(x). Note that k′(x) = 2x. To find t′(x), we shall use the chain rule. Let

z = t(x) = (x3 + x5)7.

We can set up a chain by writing

z = v7 and v = x3 + x5.

Clearly we have
dz

dv
= 7v6 and

dv

dx
= 3x2 + 5x4,

so it follows from the chain rule that

t′(x) =
dz

dx
=

dz

dv
× dv

dx
= 7v6(3x2 + 5x4) = 7(x3 + x5)6(3x2 + 5x4),

and so
f ′(x) =

du

dx
= 2x + 7(x3 + x5)6(3x2 + 5x4).

It then follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 11u10(2x + 7(x3 + x5)6(3x2 + 5x4))

= 11(x2 + (x3 + x5)7)10(2x + 7(x3 + x5)6(3x2 + 5x4)).
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12.2. Implicit Differentiation

A function y = f(x) can usually be viewed as a curve on the xy-plane, and gives a relationship between
the (independent) variable x and the (dependent) variable y by describing y explicitly in terms of
x. However, a relationship between two variables x and y cannot always be expressed as a function
y = f(x). Moreover, we may even choose to describe a function y = f(x) implicitly by simply giving
some relationship between the variables x and y, and not describing y explicitly in terms of x.

Example 12.2.1. Consider the equation x2 + y2 = 25, representing a circle of radius 5 and centred at
the origin (0, 0). This equation expresses a relationship between the two variables x and y, but y is not
given explicitly in terms of x. Indeed, it is not possible to give y explicitly in terms of x, as this equation
does not represent a function y = f(x). To see this, note that if x = 3, then both y = 4 and y = −4
will satisfy the equation, so it is meaningless to talk of f(3). On the other hand, we see that the point
(3, 4) is on the circle, and clearly there is a tangent line to the circle at the point (3, 4), as shown in the
picture below.

If we restrict our attention to the upper semicircle, then we can express the variable y explicitly as a
function of the variable x by writing

y = (25 − x2)1/2.

We can set up a chain by writing

y = u1/2 and u = 25 − x2.

Clearly we have
dy

du
=

1
2
u−1/2 and

du

dx
= −2x,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= −xu−1/2 = −x(25 − x2)−1/2.

Hence
dy

dx

∣∣∣∣
(x,y)=(3,4)

= −3
4
.

Note that our argument here involves obtaining an explicit expression for the variable y in terms of the
variable x from similar information given implicitly by the equation x2+y2 = 25. Now let us see whether
we can obtain a similar conclusion concerning the slope of the tangent line at the point (3, 4) without
first having to obtain the explicit expression y = (25− x2)1/2 of the upper semicircle. Let us start from
the equation x2 + y2 = 25 of the circle. Differentiating both sides with respect to x, we obtain

d
dx

(x2 + y2) =
d
dx

(25).
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Using the rule on the derivatives of constants, we obtain

d
dx

(25) = 0.

Using the sum rule and the rule on the derivatives of powers, we obtain

d
dx

(x2 + y2) =
d
dx

(x2) +
d
dx

(y2) = 2x +
d
dx

(y2).

We next set up a chain by writing

z = y2 and y = f(x),

where there is no need to know precisely what f(x) is. Then using the chain rule and the rule on the
derivatives of powers, we obtain

d
dx

(y2) =
dz

dx
=

dz

dy
× dy

dx
= 2y

dy

dx
.

Summarizing, we obtain

2x + 2y
dy

dx
= 0,

and so
dy

dx
= −x

y
.

Hence
dy

dx

∣∣∣∣
(x,y)=(3,4)

= −3
4

as before.

The second part of the example above is a case of using implicit differentiation, where we find the
derivative of a function y = f(x) without knowing any explicit expression for the variable y in terms of
the variable x. We shall describe this technique further by discussing a few more examples. In some of
these examples, it may be very difficult, if not impossible, to find any explicit expression for the variable
y in terms of the variable x.

Example 12.2.2. Suppose that y2 − x2 = 4. Differentiating both sides with respect to x, we obtain

d
dx

(y2 − x2) =
d
dx

(4) = 0.

It follows that
d
dx

(y2 − x2) =
d
dx

(y2) − d
dx

(x2) =
d
dx

(y2) − 2x = 0.

We next set up a chain by writing

z = y2 and y = f(x),

where there is no need to know precisely what f(x) is. Then

d
dx

(y2) =
dz

dx
=

dz

dy
× dy

dx
= 2y

dy

dx
.

Summarizing, we obtain

2y
dy

dx
− 2x = 0,

and so
dy

dx
=

x

y
.
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Example 12.2.3. Suppose that y3 + sinx = 3. Differentiating both sides with respect to x, we obtain

d
dx

(y3 + sinx) =
d
dx

(3) = 0.

It follows that
d
dx

(y3 + sinx) =
d
dx

(y3) +
d
dx

(sinx) =
d
dx

(y3) + cos x = 0.

We next set up a chain by writing

z = y3 and y = f(x),

where there is no need to know precisely what f(x) is. Then

d
dx

(y3) =
dz

dx
=

dz

dy
× dy

dx
= 3y2 dy

dx
.

Summarizing, we obtain

3y2 dy

dx
+ cos x = 0,

and so
dy

dx
= −cos x

3y2
.

Example 12.2.4. Suppose that y5 + 3y2 − 2x2 + 4 = 0. Differentiating both sides with respect to x,
we obtain

d
dx

(y5 + 3y2 − 2x2 + 4) =
d
dx

(0) = 0.

It follows that

d
dx

(y5 + 3y2 − 2x2 + 4) =
d
dx

(y5) + 3
d
dx

(y2) − 2
d
dx

(x2) +
d
dx

(4) =
d
dx

(y5) + 3
d
dx

(y2) − 4x = 0.

Using the chain rule, we obtain

d
dx

(y5) =
d
dy

(y5) × dy

dx
= 5y4 dy

dx
and

d
dx

(y2) =
d
dy

(y2) × dy

dx
= 2y

dy

dx
.

Summarizing, we obtain

(5y4 + 6y)
dy

dx
− 4x = 0,

and so
dy

dx
=

4x

5y4 + 6y
.

Example 12.2.5. Suppose that xy = 6. Differentiating both sides with respect to x, we obtain

d
dx

(xy) =
d
dx

(6) = 0.

It follows from the product rule that

d
dx

(xy) =
d
dx

(x) × y + x × d
dx

(y) = y + x
dy

dx
= 0,

and so
dy

dx
= −y

x
.



12–12 W W L Chen and X T Duong : Elementary Mathematics

Example 12.2.6. Suppose that x3 + 2x2y3 + 3y4 = 6. Differentiating both sides with respect to x, we
obtain

d
dx

(x3 + 2x2y3 + 3y4) =
d
dx

(6) = 0.

It follows that

d
dx

(x3 + 2x2y3 + 3y4) =
d
dx

(x3) + 2
(

d
dx

(x2) × y3 + x2 × d
dx

(y3)
)

+ 3
d
dx

(y4)

= 3x2 + 4xy3 + 2x2 d
dx

(y3) + 3
d
dx

(y4) = 0.

Using the chain rule, we obtain

d
dx

(y3) =
d
dy

(y3) × dy

dx
= 3y2 dy

dx
and

d
dx

(y4) =
d
dy

(y4) × dy

dx
= 4y3 dy

dx
.

Summarizing, we obtain

3x2 + 4xy3 + (6x2y2 + 12y3)
dy

dx
= 0,

and so
dy

dx
= − 3x2 + 4xy3

6x2y2 + 12y3
.

Note next that the point (1, 1) satisfies the equation. It follows that

dy

dx

∣∣∣∣
(x,y)=(1,1)

= − 7
18

.

Check that the equation of the tangent line at this point is given by 7x + 18y = 25.

Example 12.2.7. Suppose that (x2 +y3)2 = 9. Differentiating both sides with respect to x, we obtain

d
dx

((x2 + y3)2) =
d
dx

(9) = 0.

Let w = (x2 + y3)2. We can set up a chain by writing

w = z2 and z = x2 + y3,

so it follows from the chain rule that

d
dx

((x2 + y3)2) =
dw

dx
=

dw

dz
× dz

dx
= 2z

dz

dx
= 2(x2 + y3)

d
dx

(x2 + y3).

Hence
(x2 + y3)

d
dx

(x2 + y3) = 0.

On the other hand,
d
dx

(x2 + y3) =
d
dx

(x2) +
d
dx

(y3) = 2x + 3y2 dy

dx
,

where we have used the chain rule at the last step. Summarizing, we obtain

(x2 + y3)
(

2x + 3y2 dy

dx

)
= 0.

It is clear that x2 + y3 �= 0 for any point (x, y) satisfying the equation. It follows that

2x + 3y2 dy

dx
= 0,
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and so
dy

dx
= − 2x

3y2
.

Note next that the point (2,−1) satisfies the equation. It follows that

dy

dx

∣∣∣∣
(x,y)=(2,−1)

= −4
3
.

Check that the equation of the tangent line at this point is given by 4x + 3y = 5.

Example 12.2.8. The point (1, 1) is one of the intersection points of the parabola y − x2 = 0 and
the ellipse x2 + 2y2 = 3. We shall show that the two tangents at (1, 1) are perpendicular to each other.
Consider first of all the parabola y − x2 = 0. Here we can write y = x2, so that dy/dx = 2x. Hence

dy

dx

∣∣∣∣
(x,y)=(1,1)

= 2.

Consider next the ellipse x2 + 2y2 = 3. Using implicit differentiation, it is not difficult to show that

2x + 4y
dy

dx
= 0,

and so
dy

dx
= − x

2y
.

Hence
dy

dx

∣∣∣∣
(x,y)=(1,1)

= −1
2
.

Since the product of the two derivatives is equal to −1, it follows that the two tangents are perpendicular
to each other.

12.3. Derivatives of the Exponential and Logarithmic Functions

We shall state without proof the following result.

DERIVATIVE OF THE EXPONENTIAL FUNCTION. If f(x) = ex, then f ′(x) = ex.

Example 12.3.1. Consider the function y = h(x) = ex(sinx + 2 cos x). We can write

h(x) = f(x)g(x),

where f(x) = ex and g(x) = sinx + 2 cos x. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Clearly
f ′(x) = ex and g′(x) = cos x − 2 sinx.

Hence
h′(x) = ex(sinx + 2 cos x) + ex(cos x − 2 sinx) = ex(3 cos x − sinx).



12–14 W W L Chen and X T Duong : Elementary Mathematics

Example 12.3.2. Consider the function y = h(x) = ex(x2 + x + 2). We can write

h(x) = f(x)g(x),

where f(x) = ex and g(x) = x2 + x + 2. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Clearly
f ′(x) = ex and g′(x) = 2x + 1.

Hence
h′(x) = ex(x2 + x + 2) + ex(2x + 1) = ex(x2 + 3x + 3).

Example 12.3.3. Consider the function y = h(x) = e2x. We can set up a chain by writing

y = g(u) = eu and u = f(x) = 2x.

Clearly we have
dy

du
= eu and

du

dx
= 2,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 2eu = 2e2x.

Alternatively, we can set up a chain by writing

y = t(v) = v2 and v = k(x) = ex.

Clearly we have
dy

dv
= 2v and

dv

dx
= ex,

so it follows from the chain rule that

dy

dx
=

dy

dv
× dv

dx
= 2vex = 2exex = 2e2x.

Yet another alternative is to observe that h(x) = exex. It follows that we can use the product rule
instead of the chain rule. Try it!

Example 12.3.4. Consider the function y = h(x) = ex3
. We can set up a chain by writing

y = g(u) = eu and u = f(x) = x3.

Clearly we have
dy

du
= eu and

du

dx
= 3x2,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= 3x2eu = 3x2ex3

.
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Example 12.3.5. Consider the function y = h(x) = esin x+4 cos x. We can set up a chain by writing

y = g(u) = eu and u = f(x) = sinx + 4 cos x.

Clearly we have
dy

du
= eu and

du

dx
= cos x − 4 sinx,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
= eu(cos x − 4 sinx) = esin x+4 cos x(cos x − 4 sinx).

Example 12.3.6. Consider the function

y = h(x) = sin3
(
e4x2

)
.

We can set up a chain by writing

y = t(w) = w3, w = k(v) = sin v, v = g(u) = eu and u = f(x) = 4x2.

Clearly we have

dy

dw
= 3w2,

dw

dv
= cos v,

dv

du
= eu and

du

dx
= 8x,

so it follows from the chain rule that

dy

dx
=

dy

dw
× dw

dv
× dv

du
× du

dx
= 24xeuw2 cos v = 24xeu sin2 v cos v = 24xeu sin2(eu) cos(eu)

= 24xe4x2
sin2(e4x2

) cos(e4x2
).

Example 12.3.7. Suppose that e2x + y2 = 5. Differentiating both sides with respect to x, we obtain

d
dx

(e2x + y2) =
d
dx

(5) = 0.

It follows that
d
dx

(e2x + y2) =
d
dx

(e2x) +
d
dx

(y2) = 2e2x + 2y
dy

dx
= 0,

using Example 12.3.3 and the chain rule. Hence

dy

dx
= −e2x

y
.

The next example is rather complicated, and the reader is advised to concentrate on the ideas and
not to get overly worried about the arithmetic details. For accuracy, it is absolutely crucial that we
exercise great care.

Example 12.3.8. Suppose that e2x sin 3y + x2y3 = 3. Differentiating both sides with respect to x, we
obtain

d
dx

(e2x sin 3y + x2y3) =
d
dx

(3) = 0.

Using the sum and product rules, we have

d
dx

(e2x sin 3y + x2y3) =
d
dx

(e2x) × sin 3y + e2x × d
dx

(sin 3y) +
d
dx

(x2) × y3 + x2 × d
dx

(y3).
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We have
d
dx

(e2x) = 2e2x and
d
dx

(x2) = 2x.

Writing z = 3y and using the chain rule, we obtain

d
dx

(sin 3y) =
d
dy

(sin 3y) × dy

dx
=

d
dy

(sin z) × dy

dx
=

d
dz

(sin z) × dz

dy
× dy

dx
= 3 cos z

dy

dx
= 3 cos 3y

dy

dx
.

Using the chain rule, we also obtain

d
dx

(y3) =
d
dy

(y3) × dy

dx
= 3y2 dy

dx
.

Summarizing, we have

2e2x sin 3y + 3e2x cos 3y
dy

dx
+ 2xy3 + 3x2y2 dy

dx
= 2(e2x sin 3y + xy3) + 3(e2x cos 3y + x2y2)

dy

dx
= 0,

and so
dy

dx
= − 2(e2x sin 3y + xy3)

3(e2x cos 3y + x2y2)
.

Next, we turn to the logarithmic function. Using implicit differentiation, we can establish the
following result.

DERIVATIVE OF THE LOGARITHMIC FUNCTION. If f(x) = log x, then f ′(x) = 1/x.

Proof. Suppose that y = log x. Then ey = x. Differentiating both sides with respect to x, we obtain

d
dx

(ey) =
d
dx

(x) = 1.

Using the chain rule and the rule on the derivative of the exponential function, we obtain

d
dx

(ey) =
d
dy

(ey) × dy

dx
= ey dy

dx
.

Summarizing, we have

ey dy

dx
= 1,

so that
dy

dx
=

1
ey

=
1
x

. ♣

Example 12.3.9. Consider the function y = h(x) = x log x. We can write

h(x) = f(x)g(x),

where f(x) = x and g(x) = log x. It follows from the product rule that

h′(x) = f ′(x)g(x) + f(x)g′(x).

Clearly f ′(x) = 1 and g′(x) = 1/x. Hence h′(x) = log x + 1.
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Example 12.3.10. Consider the function

y = h(x) =
x log x + sinx

ex
.

We can write

h(x) =
f(x) + k(x)

g(x)
,

where f(x) = x log x, k(x) = sinx and g(x) = ex. It follows from the sum and quotient rules that

h′(x) =
g(x)(f ′(x) + k′(x)) − (f(x) + k(x))g′(x)

g2(x)
.

Clearly k′(x) = cos x and g′(x) = ex. Observe also from Example 12.3.9 that f ′(x) = log x + 1. Hence

h′(x) =
ex(log x + 1 + cos x) − (x log x + sinx)ex

e2x
=

(1 − x) log x + 1 + cos x − sinx

ex
.

Example 12.3.11. Consider the function y = h(x) = log(5x2 + 3). We can set up a chain by writing

y = g(u) = log u and u = f(x) = 5x2 + 3.

Clearly we have
dy

du
=

1
u

and
du

dx
= 10x,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
=

10x

u
=

10x

5x2 + 3
.

Example 12.3.12. Consider the function y = h(x) = log(tanx + sec x). We can set up a chain by
writing

y = g(u) = log u and u = f(x) = tanx + sec x.

Clearly we have
dy

du
=

1
u

and
du

dx
= sec2 x + tanx sec x,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
=

sec2 x + tanx sec x

u
=

sec2 x + tanx sec x

tanx + sec x
= sec x.

Example 12.3.13. Consider the function y = h(x) = log(cotx + csc x). We can set up a chain by
writing

y = g(u) = log u and u = f(x) = cot x + csc x.

Clearly we have
dy

du
=

1
u

and
du

dx
= − csc2 x − cot x csc x,

so it follows from the chain rule that

dy

dx
=

dy

du
× du

dx
=

− csc2 x − cot x csc x

u
= −csc2 x + cot x csc x

cot x + csc x
= − csc x.
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Example 12.3.14. Consider the function y = h(x) = log(sin(x1/2)). We can set up a chain by writing

y = k(v) = log v, v = g(u) = sinu and u = f(x) = x1/2.

Clearly we have
dy

dv
=

1
v
,

dv

du
= cos u and

du

dx
=

1
2x1/2

,

so it follows from the chain rule that

dy

dx
=

dy

dv
× dv

du
× du

dx
=

cos u

2x1/2v
=

cos u

2x1/2 sinu
=

cos(x1/2)
2x1/2 sin(x1/2)

.

Example 12.3.15. Suppose that x log y + y2 = 4. Differentiating both sides with respect to x, we
obtain

d
dx

(x log y + y2) =
d
dx

(4) = 0.

It follows that

d
dx

(x log y + y2) =
d
dx

(x) × log y + x × d
dx

(log y) +
d
dx

(y2) = log y + x
d
dx

(log y) +
d
dx

(y2).

By the chain rule, we have
d
dx

(log y) =
d
dy

(log y) × dy

dx
=

1
y

dy

dx

and
d
dx

(y2) =
d
dy

(y2) × dy

dx
= 2y

dy

dx
.

Summarizing, we have

log y +
(

x

y
+ 2y

)
dy

dx
= 0,

so that
dy

dx
= − y log y

x + 2y2
.

Example 12.3.16. Suppose that log(xy2) = 2x2. Differentiating both sides with respect to x, we
obtain

d
dx

(log(xy2)) =
d
dx

(2x2) = 4x.

Let z = log(xy2). We can set up a chain by writing

z = log u and u = xy2.

Then it follows from the chain rule that

d
dx

(log(xy2)) =
dz

dx
=

dz

du
× du

dx
=

1
u
× du

dx
=

1
xy2

× d
dx

(xy2).

Next, we observe that

d
dx

(xy2) =
d
dx

(x) × y2 + x × d
dx

(y2) = y2 + x × d
dy

(y2) × dy

dx
= y2 + 2xy

dy

dx
.

Summarizing, we have

y2 + 2xy
dy

dx
= 4x2y2,

so that
dy

dx
=

(4x2 − 1)y2

2xy
.
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12.4. Derivatives of the Inverse Trigonometric Functions

The purpose of this last section is to determine the derivatives of the inverse trigonometric functions by
using implicit differentiation and our knowledge on the derivatives of the trigonometric functions.

For notational purposes, we shall write

y = sin−1 x if and only if x = sin y,

and similarly for the other trigonometric functions. These inverse trigonometric functions are well
defined, provided that we restrict the values for x to suitable intervals of real numbers.

DERIVATIVES OF THE INVERSE TRIGONOMETRIC FUNCTIONS.

(a) If y = sin−1 x, then
dy

dx
=

1√
1 − x2

.

(b) If y = cos−1 x, then
dy

dx
= − 1√

1 − x2
.

(c) If y = tan−1 x, then
dy

dx
=

1
1 + x2

.

(d) If y = cot−1 x, then
dy

dx
= − 1

1 + x2
.

(e) If y = sec−1 x, then
dy

dx
=

1
x
√

x2 − 1
.

(f) If y = csc−1 x, then
dy

dx
= − 1

x
√

x2 − 1
.

Sketch of Proof. For simplicity, we shall assume that 0 < y < π/2, so that y is in the first quadrant,
and so all the trigonometric functions have positive values.

(a) If y = sin−1 x, then x = sin y. Differentiating with respect to x, we obtain

1 = cos y
dy

dx
,

so that
dy

dx
=

1
cos y

=
1√

1 − sin2 y
=

1√
1 − x2

.

(b) If y = cos−1 x, then x = cos y. Differentiating with respect to x, we obtain

1 = − sin y
dy

dx
,

so that
dy

dx
= − 1

sin y
= − 1√

1 − cos2 y
= − 1√

1 − x2
.

(c) If y = tan−1 x, then x = tan y. Differentiating with respect to x, we obtain

1 = sec2 y
dy

dx
,

so that
dy

dx
=

1
sec2 y

=
1

1 + tan2 y
=

1
1 + x2

.

(d) If y = cot−1 x, then x = cot y. Differentiating with respect to x, we obtain

1 = − csc2 y
dy

dx
,

so that
dy

dx
= − 1

csc2 y
= − 1

1 + cot2 y
= − 1

1 + x2
.
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(e) If y = sec−1 x, then x = sec y. Differentiating with respect to x, we obtain

1 = tan y sec y
dy

dx
,

so that
dy

dx
=

1
tan y sec y

=
1

(sec2 y − 1)1/2 sec y
=

1
x
√

x2 − 1
.

(f) If y = csc−1 x, then x = csc y. Differentiating with respect to x, we obtain

1 = − cot y csc y
dy

dx
,

so that
dy

dx
= − 1

cot y csc y
= − 1

(csc2 y − 1)1/2 csc y
= − 1

x
√

x2 − 1
. ♣

There is no need to remember the derivatives of any of these inverse trigonometric functions.

Problems for Chapter 12

1. By making suitable use of the chain rule and other rules as appropriate, find the derivative of each
of the following functions:
a) h(x) =

√
1 − cos x b) h(x) = sin(3x) c) h(x) = cos(sin x)

d) h(x) = x2 cos x e) h(x) = sin(2x) sin(3x) f) h(x) = 2x sin(3x)
g) h(x) = tan(3x) h) h(x) = 4 sec(5x) i) h(x) = cos(x3)
j) h(x) = cos3 x k) h(x) = (1 + cos2 x)6 l) h(x) = tan(x2) + tan2 x

m) h(x) = cos(tan x) n) h(x) = sin(sinx)

2. Find the derivative of each of the following functions:
a) h(x) = sin(ex) b) h(x) = esin x c) h(x) = e−2x sinx
d) h(x) = ex sin(2x) e) h(x) = tan(e−3x) f) h(x) = tan(ex)

3. a) For each k = 0, 1, 2, 3, . . . , find a function fk(x) such that f ′
k(x) = xk.

b) For each k = −2,−3,−4, . . . , find a function fk(x) such that f ′
k(x) = xk.

c) Find a function f−1(x) such that f ′
−1(x) = x−1.

4. Find the derivative of each of the following functions:

a) h(x) = (3x2 + π)(ex − 4) b) h(x) = x5 + 3x2 +
2
x4

+ 1 c) h(x) = 2x − 1
3
√

x
+ e2x

d) h(x) = 2ex + xe3x e) h(x) = etan x f) h(x) = 2xex − x−2

g) h(x) = log(log(2x3)) h) h(x) =
√

x + 5 i) h(x) =
x + 2
x2 + 1

j) h(x) = sin(2x + 3) k) h(x) = cos2(2x) l) h(x) = log(e−x − 1)

m) h(x) = eex+e−x

n) h(x) =
x2 + 1√

x
o) h(x) = (x + 3)2

p) h(x) = log(2x + 3) q) h(x) = tan(3x + 2x2) r) h(x) = cos(e2x)

5. Use implicit differentiation to find
dy

dx
for each of the following relations:

a) x2 + xy − y3 = xy2 b) x2 + y2 =
√

7 c)
√

x +
√

y = 25
d) sin(xy) = 2x + 5 e) x log y + y3 = log x f) y3 − xy = −6
g) x2 − xy + y4 = x2y h) sin(xy) = 3x2 − 2
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6. For each of the following, verify first that the given point satisfies the relation defining the curve,
then find the equation of the tangent line to the curve at the point:

a) xy2 = 1 at (1, 1) b) y2 =
x2

xy − 4
at (4, 2)

c) y + sin y + x2 = 9 at (3, 0) d) x2/3 + y2/3 = a2/3 at (a, 0)

− ∗ − ∗ − ∗ − ∗ − ∗ −


