PART I - BASICS

Exercise 1. Calculate derivatives in given points using the definition of a derivative.

a)
$$f(x) = x^4$$
, $x_0 = 2$, b) $f(x) = \cos x$, $x_0 = \frac{\pi}{4}$, c) $f(x) = x^3 + x^2 + x$, $x_0 \in \mathbf{R}$.

Exercise 2. Calculate the following derivatives.

a)
$$(x^{10} + x^9 + \dots + x^2 + x + 1)'$$
, b) $(\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3})'$, c) $(\sin x + \cos x + \tan x + \cot x)'$,
d) $(\ln x + \log_2 x + \log x)'$, e) $(2^x - 3^x + e^x + e)'$, f) $(\arctan x + \arcsin x)'$,
g) $(\sqrt[5]{x} - \sqrt[4]{x} + \sqrt[3]{x} - \sqrt{x})'$, h) $(\sqrt[\pi]{x})'$, $n \in \mathbb{N}$ i) $(\sqrt{\sqrt{x}})'$,
j) $(\sqrt{x} \cdot \cos x)'$, k) $(\log x \cdot \sin x)'$, l) $(\ln x \cdot \arctan x)'$,
m) $((x^2 + 2x + 1) \cdot (\cos x + \sin x))'$, n) $(\arctan x \cdot \operatorname{arccot} x)'$, o) $(\tan x \cdot \cot x)'$,
p) $(\frac{\ln x}{2^x})'$, q) $(\frac{2^x}{\ln x})'$, r) $(\frac{\sqrt{x}}{\arctan x})'$,
s) $(\frac{2x^2 + 3x^3}{4x^2 + x + 1})'$, t) $(\frac{\sin x}{\cos x})'$, u) $(\frac{e^x}{2^x})'$.

Exercise 3. Calculate the following derivatives using the chain rule.

a)
$$(\sqrt{3x+5})'$$
, b) $(\cos(4x+2))'$, c) $(\sin(\sqrt{x}))'$, d) $(\arctan(\pi x))'$,
e) $(\cos(\sin x))'$, f) $(\ln(2x^2+6x+4))'$, g) $(\tan(3x))'$, h) $(\tan^2(3x))'$,
i) $(e^{5x} \cdot x^2)'$, j) $(2^{\sin x})'$, k) $(\sin^2 x)'$, l) $(\arctan(\sin x))'$,
m) $(\sin(\arctan x))'$, n) $(\ln(\sin x + \cos x))'$, o) $(\sin(\cos(\sin x)))'$, p) $(\sin(\ln(2x+5)))'$.

Exercise 4. Calculate derivatives of the following functions and set their domains.

a)
$$f(x) = \sqrt[4]{x}$$
, b) $f(x) = x\sqrt{x} + 2\sqrt[3]{x}$, c) $f(x) = \log(\log x)$.

Exercise 5. Calculate derivatives of the second order.

a)
$$(x^n)'', n \in \mathbf{N}$$
, b) $(\sin x)'',$ c) $(\sqrt{x})'',$ d) $(\ln x)'',$
e) $(e^x \cos x)'',$ f) $(\frac{x^2}{x-2})'',$ g) $(\sin x \cos x)'',$ h) $(\frac{1-\cos x}{\sin x})''.$

Exercise 6. Calculate derivatives of given orders.

a)
$$\sin^{(n)} x$$
, $n \in \mathbf{N}$, b) $\log^{(3)} x$, c) $(5x^5 + 6x^4 + 7x^3)^{(6)}$, d) $(\frac{1}{x})^{(t)}$, $t \in \{2, 3, 4, 5\}$.

Exercise 7. Formulate tangent and normal lines equations at given points.

- a) $f(x) = \frac{x-2}{x+3}, x_0 = -2,$
- b) $f(x) = \arcsin(\frac{1-x}{3}), x_0 = 1,$
- c) $f(x) = \frac{x-1}{x^2}, x_0 = -1.$

Exercise 8. Find the approximated value using total differential. Compare your result with an exact value and caculate errors.

a)
$$\sqrt{3 + \frac{1}{0.98}}$$
, b) $\ln(9 - (2.01)^3)$, c) $(45.3)^2$.

Exercise 9. Calculate derivatives of the following functions.

a)
$$f(x) = x^2 \cdot y + y^2 + 2xy$$
, b) $f(y) = x^2 \cdot y + y^2 + 2xy$, c) $f(x) = \cos x \sin y$.

Exercise 10. Calculate the following limits. In each case check whether the assumptions of l'Hospitals theorem are met.

a)
$$\lim_{x \to 0} \frac{x - \arctan x}{x^3}$$
, b) $\lim_{x \to 0^+} \frac{\ln(\sin 2x)}{\ln(\sin x)}$, c) $\lim_{x \to 0} (\cot x - \frac{1}{x})$,
d) $\lim_{x \to 0} (\frac{2}{\pi} \arctan x)^{x^2}$, e) $\lim_{x \to \infty} x \cdot (e^{\frac{1}{x}} - 1)$, f) $\lim_{x \to 3^+} (x - 3) \cdot e^{\frac{1}{x - 3}}$.

PART II - APPLICATIONS

Exercise 11. Find extremes of the following functions and determine monotonicity.

$$\begin{aligned} a(x) &= \arctan x - \ln x, \quad b(x) = \frac{x^2 + 1}{x}, \qquad c(x) = \frac{x}{x^2 + 1}, \qquad d(x) = 3x^4 - 4x^3 - 6x^2 + 12x + 4, \\ e(x) &= \frac{x}{\ln x}, \qquad f(x) = x\sqrt{x - 4}, \quad g(x) = x^2 e^{-x}, \quad h(x) = \ln 1 + x^2. \end{aligned}$$

Exercise 12. Find the largest and the smallest values of the following functions in given intervals.

$$\begin{split} a(x) &= \frac{2}{\cos x}, \ x \in [-\frac{\pi}{4}, \frac{\pi}{4}], \quad b(x) = \frac{1}{x^2 - 1}, \ x \in [-\frac{1}{2}, \frac{1}{2}], \\ c(x) &= x^2 \ln x, \ x \in [\frac{1}{e}, 2], \quad d(x) = |x - 1|, \ x \in [0, 3]. \end{split}$$

Exercise 13. Find local extremes of the following functions.

$$a(x) = \arctan \frac{x}{3} - x, \quad b(x) = \ln (x^2 - 1) + \frac{1}{x^2 - 1}, \quad c(x) = 2 - |x|, \quad d(x) = \ln^2 x - 2\ln x.$$

Exercise 14. Find inflection points and examine concavity of the following functions.

$$\begin{aligned} &a(x) = x^4 e^{-x}, &b(x) = x \sqrt{x-4}, &c(x) = \ln(x^2+1), &d(x) = \arctan x - x, \\ &e(x) = \frac{1}{2} (e^x - e^{-x}), &f(x) = x e^{-x}, &g(x) = \frac{\ln(2x)}{x}, &h(x) = x \sin(\ln x). \end{aligned}$$

Exercise 15. Sketch an example of a graph of:

- a) a decreasing function that is concave up to the left and concave down to the right,
- b) an increasing function that is concave up to the left and concave down to the right,
- c) an increasing function that is concave down to the left and concave up to the right,
- d) a function that changes its concavity, but not its monotonicity,
- e) a function that changes its monotonicity, but not its concavity.

All functions need to be continuous and differentiable in **R**.

Exercise 16. Find all asymptotes of the following function graphs.

a)
$$f(x) = \frac{x^3}{x^2+1}$$
, b) $f(x) = \frac{x^3}{3(x^2-x-2)}$, c) $f(x) = \arctan \frac{x}{3} - x$.

Exercise 17. Find domain, co-domain, monotonicity, extremes, inflection points, concavity and asymptotes of the following functions and sketch their graphs.

$$\begin{split} a(x) &= \frac{x^2}{2(x-3)}, \quad b(x) = \frac{x}{\sqrt{x^2-4}}, \quad c(x) = x^2 \ln x, \qquad d(x) = xe^{-x}, \\ e(x) &= \frac{x}{\ln x}, \qquad f(x) = x^2 e^{-x}, \quad g(x) = x\sqrt{x-4}, \quad h(x) = \ln (1+x^2). \end{split}$$

Some exercises were taken from the script "Matematyka - podstawy z elementami matematyki wyższej" issued by the Gdańsk University of Technology publishing house.