PART I - Basic properties of a sequence.

Exercise 1. Calculate: 2!, 4!, 2! •3!, (2•3)!, ($\left.\begin{array}{l}4 \\ 1\end{array}\right), \quad\binom{3}{2}$.
Exercise 2. Simplify: $\frac{(n-1)!}{(n+1)!}, \frac{(n+2)!(n+1)!}{n!\cdot(n-1)!}, \quad \frac{(n+1)!+n!}{(n+1)!-n!}, \quad \frac{\binom{n+2}{n}}{n^{2}}$.
Exercise 3. Write down the first five terms of each sequence and check the monotonicity. In each case state whether the sequence is bounded.

$$
\begin{array}{lll}
a_{n}=2 n^{2}-3 n+1, & b_{n}=\frac{4 n+5}{2 n+1}, & c_{n}=n^{2}-n-1, \\
d_{n}=\frac{n^{2}-1}{n}, & e_{n}=\left(\frac{2}{3}\right)^{n}, & f_{n}=-\frac{1}{2} \cdot 4^{n-1} \\
g_{n}=\frac{2^{n}}{n!}, & h_{n}=(-1)^{n} \cdot \frac{1}{n^{2}}, & i_{n}=\frac{1+n^{2}}{1+n^{3}} .
\end{array}
$$

PART II - Arithmetic and geometric sequences.

Exercise 4. We know that $a_{1}=6$ and $a_{8}=34$. Find a_{2}, \ldots, a_{7} so that $\left(a_{n}\right)$ becomes an arithmetic sequence.

Exercise 5. The sum of x first terms of a sequence $a_{n}=5 n+2$ is 553 . Calculate x.
Exercise 6. Calculate the number of terms in a sum $2+5+8+13+\cdots+449$, calculate the sum as well.
Exercise 7. Calculate the sum of all two-digit numbers.
Exercise 8. Check if numbers: $\sqrt{5}, \frac{\sqrt{5}}{\sqrt{5}-2}, \frac{5+2 \sqrt{5}}{\sqrt{5}-2}$ given in that specific order create a geometric sequence.
Exercise 9. Find the first term of a geometric sequence in which the common ratio is 2 and the sum of eight first terms is 765 .

Exercise 10. Find the first term and the common difference of an arithmetic sequence knowing that:

$$
\text { a) } a_{7}-a_{3}=8 \text { and } a_{2} \cdot a_{7}=75, \quad \text { b) } a_{2}+a_{5}-a_{3}=10 \text { and } a_{2}+a_{9}=17
$$

Exercise 11. Find the first term of a geometric sequence knowing that:
a) $q=-\sqrt{2}$ and $S_{6}=-7$,
b) $q=\frac{2}{3}$ and $S_{4}=65$.

Exercise 12. Check if $\left(a_{n}\right)$ is a geometric progression if:
a) $a_{n}=3 \cdot 2^{4 n+1}$,
b) $a_{n}=3^{n+1} \cdot 2^{n}-6^{n}$.

PART III - The limit of a sequence.

Exercise 13. Draw graphs of the following sequences and find their limits (if they exist).

$$
a_{n}=n-1, \quad b_{n}=\frac{1}{n}, \quad c_{n}=\frac{1}{n}+2, \quad d_{n}=\frac{(-1)^{n+1}}{n}, \quad e_{n}=\frac{n-1}{n}, \quad f_{n}=(-1)^{n} \frac{n-1}{n}, \quad g_{n}=3 .
$$

Exercise 14. Give your own two examples of a divergent sequence.
Exercise 15. Calculate the limits of the following sequences.
Hints:
$\left(a_{n} \rightarrow d_{n}\right)$ and $\left(i_{n} \rightarrow l_{n}\right)$ - basic operations on limits,
$\left(e_{n} \rightarrow h_{n}\right)$ - use $\lim _{n \rightarrow \infty} q^{n}$,
($m_{n} \rightarrow s_{n}$) - sandwich theorem or "two sequences" theorem,
$\left(t_{n} \rightarrow y_{n}\right)$ - use $\lim _{n \rightarrow \infty}\left(1+\frac{1}{b_{n}}\right)^{b_{n}}=e$.

$$
\begin{array}{llll}
a_{n}=\frac{4 n^{5}-6 n^{2}+1}{6 n^{5}+n^{3}-8}, & b_{n}=\frac{-4 n^{2}+n-9}{36^{+}+2 n-1}, & \left.c_{n}=\frac{(n+2}{n}\right) \\
e_{n}=\frac{5 \cdot 9^{n}-5^{n+1}+3}{-3^{2 n}+2^{3 n+1}-1}, & f_{n}=\frac{5^{n+1}-2 \cdot 3^{n}+8}{2^{33+1}-5^{n}+7}, & g_{n}=\frac{-3 \cdot 2^{3 n}-2^{n}+5}{7 \cdot 3^{n+2}-2^{2 n+1}+1}, & d_{n}=\frac{3 n^{6}+2 n-1}{-4 n^{2}+n-9}, \\
h_{n}=\sqrt{\pi^{n}}-\sqrt{e^{n}}, \\
\sqrt{n+\sqrt{n+\sqrt{n}}}, & j_{n}=\frac{\sqrt[3]{n^{2}+1}-1}{\sqrt[3]{n^{2}-n}}, & k_{n}=\sqrt{n^{2}+1}-\sqrt{n^{2}-1}, & l_{n}=\sqrt[3]{n^{3}+2 n^{2}}-n, \\
m_{n}=\sqrt[n]{e^{n}+\pi^{n}+8^{n}}, & o_{n}=\sqrt[n]{7+\cos (n \pi)}, & p_{n}=\frac{5 \cdot 4^{n}+3 \sin (n!)}{2^{2 n}+7}, & q_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}, \\
r_{n}=(4-\arctan n)^{n}, & s_{n}=\frac{2 n^{3}+1}{4 n^{2}+\cos \left(n^{2}\right)}, & t_{n}=\left(\frac{n+5}{n}\right)^{3 n}, & u_{n}=\left(\frac{n-2}{n+4}\right)^{5 n+2009}, \\
v_{n}=\left(\frac{n^{2}+n}{n^{2}-3 n-4}\right)^{n-10}, & w_{n}=\left(1-\frac{1}{n^{2}}\right)^{n}, & x_{n}=\left(\frac{n+4}{n+3}\right)^{1979-2 n}, & y_{n}=\left(1-\frac{2}{n^{2}}\right)^{2-3 n} .
\end{array}
$$

Exercise 16. Calculate the following limits. In each case firstly simplify the n-th term.

$$
a_{n}=\frac{1}{n}+\frac{2}{n}+\cdots+\frac{n-1}{n}, \quad b_{n}=\frac{1+2+\cdots+2 n}{(2-3 n)(n+2)}, \quad c_{n}=\frac{1}{n^{3}}+\frac{2}{n^{3}}+\cdots+\frac{n-1}{n^{3}} .
$$

Exercise 17. Calculate sums of the following infinite geometric sequences.
a) $7+2.1+0.63+\ldots$,
b) $\sqrt{5}+\frac{1}{\sqrt{5}}+\frac{1}{5 \sqrt{5}}+\ldots$.

Exercise 18. Express the following periodic decimal fractions as common fractions: a) 3.(14), b) $0.3(21)$, c) $1.24(36)$.

Most exercises were taken from the script "Matematyka - podstawy z elementami matematyki wyższej" issued by the Gdańsk University of Technology publishing house.

