Definite integral

Let $f(x)$ be continuous and integrable in $[a, b]$. A definite integral of function $f(x)$ in the interval of $[a, b]$ is given by the following formula:

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a),
$$

where $F(x)$ is the antiderivative of $f(x)$ (in other words: the primitive of $f(x)$).
From now on, integral $\int f(x) d x$ should be considered as the indefinite integral.

Properties

$$
\int_{a}^{a} f(x) d x=0, \quad \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

Examples

Example 1. $\int_{2}^{4} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{2} ^{4}=\frac{4^{3}}{3}-\frac{2^{3}}{3}=\frac{64-8}{3}=\frac{56}{3}$.

Example 2. Integration by substitution.
$\int_{\frac{\pi}{2}}^{\pi} \cos \frac{x}{2} d x=\left|\begin{array}{c}t=\frac{x}{2} \\ d t=\left(\frac{x}{2}\right)^{\prime}=\frac{d x}{2} \\ 2 d t=d x \\ t\left(\frac{\pi}{2}\right)=\frac{\pi}{4}, t(\pi)=\frac{\pi}{2} \quad!!!\end{array}\right|=2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos t d t=\left.2 \sin t\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}=2\left(1-\frac{\sqrt{2}}{2}\right)=2-\sqrt{2}$.
Example 3. Integration by parts.
$\int_{1}^{e} x \ln x d x=\left|\begin{array}{cc}f(x)=\ln x & f^{\prime}(x)=\frac{1}{x} \\ g^{\prime}(x)=x & g(x)=\frac{x^{2}}{2}\end{array}\right|=\left.\left(\frac{x^{2} \ln x}{2}\right)\right|_{1} ^{e}-\int_{1}^{e} \frac{x^{2}}{2 x} d x=\left(\frac{e^{2}}{2}-0\right)-\int_{1}^{e} \frac{x}{2} d x=$ $=\frac{e^{2}}{2}-\left.\frac{x^{2}}{4}\right|_{1} ^{e}=\frac{e^{2}}{2}-\left(\frac{e^{2}}{4}-\frac{1}{4}\right)=\frac{e^{2}+1}{4}$.

Applications - Area

If $f(x) \geq 0$ for $x \in[a, b]$ then $\int_{a}^{b} f(x) d x$ is equal to the area bounded by the graph of $f(x)$, lines $x=a$ and $x=b$ and the OX axis. Here are some useful templates for calculating areas:

$$
\int_{a}^{b}-f(x) d x
$$

$$
\int_{a}^{b}-f(x) d x+\int_{b}^{c} f(x) d x
$$

$\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

Hint:

$$
\int_{a}^{b} g(x) d x+\int_{b}^{c} f(x)
$$

Example 1. Calculate the shaded area of the $f(x)=x^{2}-1$ graph.
Solution: The area is equal to

$$
\begin{aligned}
& \left(\int_{-2}^{0} 3 d x-\int_{-2}^{-1}\left(x^{2}-1\right) d x\right)-\int_{0}^{1}\left(x^{2}-1\right) d x= \\
& =\left.3 x\right|_{-2} ^{0}-\left.\left(\frac{x^{3}}{3}-x\right)\right|_{-2} ^{-1}-\left.\left(\frac{x^{3}}{3}-x\right)\right|_{0} ^{1}= \\
& =(0+6)-\left(-\frac{1}{3}+1-\left(-\frac{8}{3}+2\right)\right)-\left(\frac{1}{3}-1\right)=5 \frac{1}{3} .
\end{aligned}
$$

Example 2. Calculate the area bounded by graphs of $g(x)=x^{2}$ and $f(x)=x$. Make a drawing.
Solution: The area is equal to
$\int_{0}^{1}\left(x-x^{2}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$.

Example 3. Let R be a region bounded by the graphs of $\alpha \sin x$ and $y=0$ for $x \in\{0, \pi\}$. For which values of parameter α is the area of R equal to 4? Sketch a diagram.
Solution: The area is equal to
$\int_{0}^{\pi} \alpha \sin x d x=-\left.\alpha \cos x\right|_{0} ^{\pi}=-\alpha(-1-1)=2 \alpha=4$.
Therefore $\alpha=2$.

Applications - Volume

If a space figure (in other words: a solid) is created by revolvong a graph of some function about the OX axis, then it is called a solid of revolution.

The volume of such a solid is given by the following formula:

$$
V=\pi \int_{a}^{b}(f(x))^{2} d x
$$

Example 4. Draw a solid of a revolution of function $f(x)=\sin x$ in the interval of $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$. Calculate the volume of the solid.
Solution: $V=\pi \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \sin ^{2} x d x=\pi\left(\frac{\sin 2 x+2 x}{4}\right)_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}=$ $\pi\left(\frac{0+3 \pi}{4}-\frac{0+\pi}{4}\right)=\frac{\pi^{2}}{2}$.

Applications - Surface of Revolution

The surface of a solid of revolution obtained by rotating the graph of $f(x)$ about the OX axis in an interval of $[a, b]$ is given by the following formula:

$$
S=2 \pi \int_{a}^{b}|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Note that this formula describes only the side-surface. To obtain the complete surface, one needs to add $\pi f^{2}(a)+\pi f^{2}(b)$ to S.

Example 5. Draw a solid of a revolution of a function $f(x)=\frac{x}{2}+1$ in the interval of $[0,5]$ and then calculate its surface. What is the complete surface of this solid?

Solution: The side-surface is equal to:
$S=2 \pi \int_{0}^{5}\left(\frac{x}{2}+1\right) \sqrt{1+\left(\frac{1}{2}\right)^{2}} d x=2 \pi \int_{0}^{5} \frac{\sqrt{5}}{2}\left(\frac{x}{2}+1\right) d x=\left.\sqrt{5} \pi\left(\frac{x^{2}}{4}+x\right)\right|_{0} ^{5}=$ $\sqrt{5} \pi\left(\frac{25}{4}+5-0\right)=\frac{56 \sqrt{5} \pi}{5}$.
Therefore, the complete surface is equal to
$S_{c}=\pi\left(\frac{56 \sqrt{5}}{5}+1+\left(3 \frac{1}{2}\right)^{2}\right)=\pi\left(\frac{56 \sqrt{5}}{5}+\frac{53}{4}\right)$.

Applications - Length of the curve

Let C be a curve of $f(x)$ in the interval of $[a, b]$. Lhe length of C is given by the formula:

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

