Definition

An infinite sequence (or sequence) of numbers is a function whose domain is the set of positive integers. The number a_{n} is called the \underline{n} th term of the sequence, or the term with index n.

The graph of the sequence $\left(a_{n}\right)$ consists of those points in the $x y$-plane for which $x=n$ and $y=a_{n}$ for $n \in \mathbf{N}$. The points must not be connected with a line, which is an often-made mistake.

REMARK

Usually, n_{1} is 1 , and the domain is the set of all natural numbers. But sometimes we want to start our sequence elsewhere.

Monotonicity

Sequence $\left(a_{n}\right)$ is:

- increasing - if $a_{n+1}>a_{n}$ for every $n \in \mathbf{N}$,
- nondecreasing - if $a_{n+1} \geq a_{n}$ for every $n \in \mathbf{N}$,
- nonincreasing - if $a_{n+1} \leq a_{n}$ for every $n \in \mathbf{N}$,
- decreasing - if $a_{n+1}<a_{n}$ for every $n \in \mathbf{N}$.

To check monotonicity, it is enough to check the sign of $a_{n+1}-a_{n}$. If:

- $a_{n+1}-a_{n}>0$ for every $n \in \mathbf{N}$, then the sequence is increasing,
- $a_{n+1}-a_{n} \geq 0$ for every $n \in \mathbf{N}$, then the sequence is nondecreasing,
- $a_{n+1}-a_{n} \leq 0$ for every $n \in \mathbf{N}$, then the sequence is nonincreasing,
- $a_{n+1}-a_{n}<0$ for every $n \in \mathbf{N}$, then the sequence is decreasing.

If all terms of a sequence $\left(a_{n}\right)$ are positive, then we can also check the value of $\frac{a_{n+1}}{a_{n}}$:

- $\frac{a_{n+1}}{a_{n}}>1$ for every $n \in \mathbf{N}$, then the sequence is increasing,
- $\frac{a_{n+1}}{a_{n}} \geq 1$ for every $n \in \mathbf{N}$, then the sequence is nondecreasing,
- $\frac{a_{n+1}}{a_{n}} \leq 1$ for every $n \in \mathbf{N}$, then the sequence is nonincreasing,
- $\frac{a_{n+1}}{a_{n}}<1$ for every $n \in \mathbf{N}$, then the sequence is decreasing.

Example 1. Let us consider sequence $a_{n}=-3^{n}+2 n+1$. To establish monotonicity, we need to check the sign of $a_{n+1}-a_{n}$.

$$
a_{n+1}-a_{n}=-3^{n+1}+2(n+2)+1-\left(-3^{n}+2 n+1\right)=-2 \cdot 3^{n}+2<0 \text { for every } n \in \mathbf{N} .
$$

Thus, sequence a_{n} is decreasing.
 so we will check the value of $\frac{b_{n+1}}{b_{n}}$.

$$
\frac{b_{n+1}}{b_{n}}=\frac{4^{n+1}}{(n+5)!} \cdot \frac{(n+4)!}{4^{n}}=\frac{4 \cdot(n+4)!}{(n+4)!(n+5)}=\frac{4}{n+5}<1 \text { for every } n \in \mathbf{N} \text {. }
$$

This sequence is also decreasing.
Example 3. Let $c_{n}=(-1)^{n} \cdot n$. The first few terms of this sequence are:

$$
-1,2,-3,4,-5,6, \ldots
$$

We can easily see that this sequence is nonmonotonic.

Definition

Sequence $\left(a_{n}\right)$ is bounded from below if there exists number $m \in \mathbf{R}$ such that $a_{n} \geq m$ for every $n \in \mathbf{N}$.

Sequence $\left(a_{n}\right)$ is bounded from above if there exists number $M \in \mathbf{R}$ such that $a_{n} \leq M$ for every $n \in \mathbf{N}$.

Sequence $\left(a_{n}\right)$ is bounded if it is bounded from below and from above.

Example 4. Sequence $a_{n}=1+\frac{2}{n}$ is bounded from above by 3 and from below by 1 .
Example 5. Sequence $a_{n}=n^{n}$ is bounded only from below by 1 .
Example 6. Sequence $a_{n}=(-1)^{n} \cdot n$ is not bounded.

Definition

Sequence $\left(a_{n}\right)$ is an arithmetic progression if $a_{n+1}-a_{n}=r$ for every $n \in \mathbf{N}$. Number r is called the common difference of the progression.

The sum of the first n terms of the arithmetic progression is equal to:

$$
S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\frac{a_{1}+a_{n}}{2} \cdot n
$$

Example 7. We know that $a_{1}=6$ and $a_{8}=34$. Find a_{2}, \ldots, a_{7} so that $\left(a_{n}\right)$ becomes an arithmetic progression.

Solution: We know that $a_{1}=6$ and $a_{8}=a_{1}+7 r=34$. Therefore $r=4$. The missing numbers are: $a_{2}=a_{1}+r=10, a_{3}=a_{1}+2 r=14, a_{4}=18, a_{5}=22, a_{6}=26, a_{7}=30$.

DEfinition

Sequence $\left(a_{n}\right)$ is a geometric progression if $\frac{a_{n+1}}{a_{n}}=q$ for every $n \in \mathbf{N}$. Number q is called the common ratio of the progression.

The sum of the first n terms of the geometric progression is equal to:

$$
S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\left\{\begin{array}{cc}
n \cdot a_{1} & q=1 \\
\frac{a_{1}\left(1-q^{n}\right)}{1-q} \cdot n & q \neq 1
\end{array}\right.
$$

Example 8. Find the first term of a geometric progression in which the common ratio is 2 and the sum of eight first terms is 765 .
Solution: We know that $q=2$ and $S_{8}=765$. So, $a_{1} \frac{1-2^{8}}{1-2}=765$. Hence $a_{1}=\frac{765}{255}=3$.

Definition

 an index $n_{0} \in \mathbf{N}$ such that $\left(n>n_{0}\right) \Longrightarrow\left(\left|a_{n}-g\right|<\epsilon\right)$ for all $n \in \mathbf{N}$.

If no such limit exists, we say that $\left(a_{n}\right)$ diverges.
We call g the limit of the sequence. It may happen that $g= \pm \infty$.

EXAMPLES

$$
a_{n}=n-1
$$

$$
a_{n}=\frac{(-1)^{n+1}}{n}
$$

$$
a_{n}=\frac{n-1}{n}
$$

$$
a_{n}=(-1)^{n} \cdot \frac{n-1}{n}
$$

$$
a_{n}=3
$$

Limit Theorems

If sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge (both limits exist and are finite), then

- Sum/Difference Rule: $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$,
- Constant Multiple Rule: $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$, where $c \in R$,
- Product Rule: $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} b_{n}\right)$,
- Quotient Rule: $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, if $\lim _{n \rightarrow \infty} b_{n} \neq 0$,
- $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{p}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p}$, where $p \in Z \backslash\{0\}$,
- $\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\sqrt[k]{\lim _{n \rightarrow \infty} a_{n}}$, where $k \in N$.

Remark

If the sequence $\left(a_{n}\right)$ diverges, and if c is any number different then 0 , then the sequence $\left(c a_{n}\right)$ also diverges.

Theorem

If $\lim _{n \rightarrow \infty} a_{n}=g$, and if f is a function that is continuous at g and definied at all the a_{n} 's, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(g)$.

Theorem

If $\left(a_{n}\right)$ converges, then $\left(a_{n}\right)$ is bounded. If $\left(a_{n}\right)$ is unbounded, then $\left(a_{n}\right)$ diverges.

Limits That Arise Frequently

- $\lim _{n \rightarrow \infty} q^{n}=\left\{\begin{array}{cc}\text { does not exist } & q \leq-1 \\ 0 & |q|<1 \\ 1 & q=1 \\ \infty & q>1\end{array}\right.$.
- If $a>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

The Sandwich Theorem for Sequences

If $a_{n} \leq b_{n} \leq c_{n}$ for all $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=g$, then $\lim _{n \rightarrow \infty} b_{n}=g$.

Theorem of two sequences

If $a_{n} \leq b_{n}$ for every $n \geq n_{0} \in \mathbf{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} b_{n}=\infty$ as well.

Theorem

Sequence $\left(1+\frac{1}{n}\right)^{n}$ converges to $e(\approx 2,7182818)$.

Remark

If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty}\left(1+\frac{1}{a_{n}}\right)^{a_{n}}=e$.

Examples

Example 9. $\lim _{n \rightarrow \infty} \frac{-4 n^{2}+n-9}{3 n^{6}+2 n-1}=\lim _{n \rightarrow \infty} \frac{-\frac{4}{n^{4}}+\frac{1}{n^{5}}-\frac{9}{n^{6}}}{3+\frac{2}{n^{5}}-\frac{1}{n^{6}}}=\frac{0}{3}=0$.
Example 10. $\lim _{n \rightarrow \infty} \frac{5 \cdot 9^{n}-5^{n+1}+3}{-3^{2 n}+2^{3 n+1}-1}=\lim _{n \rightarrow \infty} \frac{5 \cdot 9^{n}-5 \cdot 5^{n}+3}{-9^{n}+2 \cdot 8^{n}-1}=\lim _{n \rightarrow \infty} \frac{5-5 \cdot\left(\frac{5}{9}\right)^{n}+\frac{3}{9^{n}}}{-1+2 \cdot\left(\frac{8}{9}\right)^{n}-\frac{1}{9^{n}}}=-5$.
Example 11. $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+\sqrt{n+\sqrt{n}}}}=\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{\sqrt{n}}}{\frac{\sqrt{n+\sqrt{n+\sqrt{n}}}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\frac{n}{n}+\sqrt{\frac{n}{n^{2}}+\sqrt{\frac{n}{n^{4}}}}}}=$
$=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\sqrt{\frac{1}{n}+\sqrt{\frac{1}{n^{3}}}}}}=1$.
Example 12. $\lim _{n \rightarrow \infty} \sqrt[n]{e^{n}+\pi^{n}+8^{n}}=$?.
We know that $8^{n} \leq e^{n}+\pi^{n}+8^{n} \leq 8^{n}+8^{n}+8^{n}=3 \cdot 8^{n}$.

$$
\text { So: } \sqrt{8^{n}} \leq \sqrt{e^{n}+\pi^{n}+8^{n}} \leq \sqrt{3 \cdot 8^{n}} .
$$

We also know that $\lim _{n \rightarrow \infty} \sqrt[n]{8^{n}}=8$ and $\lim _{n \rightarrow \infty} \sqrt[n]{3 \cdot 8^{n}}=\lim _{n \rightarrow \infty} 8 \cdot \sqrt[n]{3}=8$.

$$
\text { Thus } \lim _{n \rightarrow \infty} \sqrt[n]{e^{n}+\pi^{n}+8^{n}}=8
$$

Example 13. $\lim _{n \rightarrow \infty}(4-\arctan n)^{n}=$?.
We know that $-\frac{\pi}{2}<\arctan n<\frac{\pi}{2}$. So, it is true that:

$$
4-\arctan n>4-\frac{\pi}{2}>2 \text { and }(4-\arctan n)^{n}>2^{n}
$$

Since $\lim _{n \rightarrow \infty} 2^{n}=\infty$, then by the theorem of two sequences we have:

$$
\lim _{n \rightarrow \infty}(4-\arctan n)^{n}=\infty
$$

Example 14. $\lim _{n \rightarrow \infty}\left(\frac{n+5}{n}\right)^{3 n}=\lim _{n \rightarrow \infty}\left(1+\frac{5}{n}\right)^{3 n}=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{\frac{n}{5}}\right)^{\frac{n}{5}}\right]^{15}=e^{15}$.
Example 15. $\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{2}{n}+\cdots+\frac{n-1}{n}\right)=\lim _{n \rightarrow \infty} \frac{1+2+\cdots+n-1}{n}=\lim _{n \rightarrow \infty} \frac{\frac{(1+(n-1))(n-1)}{2}}{n}=$ $=\lim _{n \rightarrow \infty} \frac{n-1}{2}=\infty$.

The sum of an infinite geometric sequence
If a_{n} is a geometric sequence with the common ratio $|q|<1$ then $S=a_{1}+a_{2}+\cdots=\frac{a_{1}}{1-q}$.

Example 16. Calculate $7+2.1+0.63+\ldots$.
Solution. It is easy to see that $q=0.3<1$, so $S=\frac{7}{1-0.3}=10$.

Example 17. Express $1.24(36)$ as a common fraction.
Solution $1.24(36)=1.2436363636 \cdots=1.24+(0.0036+0.000036+\ldots)=1.24+\frac{0.36}{1-0.01}=$ $1.24+\frac{36}{9900}=\frac{342}{275}$.

