DEFINITION

An <u>infinite sequence</u> (or <u>sequence</u>) of numbers is a function whose domain is the set of positive integers. The number a_n is called the <u>nth term</u> of the sequence, or the term with <u>index n</u>. The graph of the sequence (a_n) consists of those points in the xy-plane for which x = n and

 $y = a_n$ for $n \in \mathbb{N}$. The points must not be connected with a line, which is an often-made mistake.

Remark

Usually, n_1 is 1, and the domain is the set of all natural numbers. But sometimes we want to start our sequence elsewhere.

MONOTONICITY

Sequence (a_n) is:

- increasing if $a_{n+1} > a_n$ for every $n \in \mathbf{N}$,
- nondecreasing if $a_{n+1} \ge a_n$ for every $n \in \mathbf{N}$,
- nonincreasing if $a_{n+1} \leq a_n$ for every $n \in \mathbf{N}$,
- decreasing if $a_{n+1} < a_n$ for every $n \in \mathbf{N}$.

To check monotonicity, it is enough to check the sign of $a_{n+1} - a_n$. If:

- $a_{n+1} a_n > 0$ for every $n \in \mathbf{N}$, then the sequence is increasing,
- $a_{n+1} a_n \ge 0$ for every $n \in \mathbf{N}$, then the sequence is nondecreasing,
- $a_{n+1} a_n \leq 0$ for every $n \in \mathbf{N}$, then the sequence is nonincreasing,
- $a_{n+1} a_n < 0$ for every $n \in \mathbf{N}$, then the sequence is decreasing.

If all terms of a sequence (a_n) are positive, then we can also check the value of $\frac{a_{n+1}}{a_n}$:

- $\frac{a_{n+1}}{a_n} > 1$ for every $n \in \mathbf{N}$, then the sequence is increasing,
- $\frac{a_{n+1}}{a_n} \ge 1$ for every $n \in \mathbf{N}$, then the sequence is nondecreasing,
- $\frac{a_{n+1}}{a_n} \leq 1$ for every $n \in \mathbf{N}$, then the sequence is nonincreasing,
- $\frac{a_{n+1}}{a_n} < 1$ for every $n \in \mathbf{N}$, then the sequence is decreasing.

Example 1. Let us consider sequence $a_n = -3^n + 2n + 1$. To establish monotonicity, we need to check the sign of $a_{n+1} - a_n$.

$$a_{n+1} - a_n = -3^{n+1} + 2(n+2) + 1 - (-3^n + 2n + 1) = -2 \cdot 3^n + 2 < 0$$
 for every $n \in \mathbb{N}$.

Thus, sequence a_n is decreasing.

Example 2. Now let us consider sequence $b_n = \frac{4^n}{(n+4)!}$. Every term of this sequence is positive, so we will check the value of $\frac{b_{n+1}}{b_n}$.

$$\frac{b_{n+1}}{b_n} = \frac{4^{n+1}}{(n+5)!} \cdot \frac{(n+4)!}{4^n} = \frac{4 \cdot (n+4)!}{(n+4)!(n+5)} = \frac{4}{n+5} < 1 \text{ for every } n \in \mathbf{N}.$$

This sequence is also decreasing.

Example 3. Let $c_n = (-1)^n \cdot n$. The first few terms of this sequence are:

$$-1, 2, -3, 4, -5, 6, \ldots$$

We can easily see that this sequence is nonmonotonic.

DEFINITION

Sequence (a_n) is <u>bounded from below</u> if there exists number $m \in \mathbf{R}$ such that $a_n \ge m$ for every $n \in \mathbf{N}$.

Sequence (a_n) is <u>bounded from above</u> if there exists number $M \in \mathbf{R}$ such that $a_n \leq M$ for every $n \in \mathbf{N}$.

Sequence (a_n) is <u>bounded</u> if it is bounded from below and from above.

Example 4. Sequence $a_n = 1 + \frac{2}{n}$ is bounded from above by 3 and from below by 1. **Example 5.** Sequence $a_n = n^n$ is bounded only from below by 1. **Example 6.** Sequence $a_n = (-1)^n \cdot n$ is not bounded.

DEFINITION

Sequence (a_n) is an <u>arithmetic progression</u> if $a_{n+1} - a_n = r$ for every $n \in \mathbb{N}$. Number r is called the <u>common difference</u> of the progression.

The sum of the first n terms of the arithmetic progression is equal to:

$$S_n = a_1 + a_2 + \dots + a_n = \frac{a_1 + a_n}{2} \cdot n$$

Example 7. We know that $a_1 = 6$ and $a_8 = 34$. Find a_2, \ldots, a_7 so that (a_n) becomes an arithmetic progression.

Solution: We know that $a_1 = 6$ and $a_8 = a_1 + 7r = 34$. Therefore r = 4. The missing numbers are: $a_2 = a_1 + r = 10, a_3 = a_1 + 2r = 14, a_4 = 18, a_5 = 22, a_6 = 26, a_7 = 30$.

DEFINITION

Sequence (a_n) is a geometric progression if $\frac{a_{n+1}}{a_n} = q$ for every $n \in \mathbb{N}$. Number q is called the <u>common ratio</u> of the progression.

The sum of the first n terms of the geometric progression is equal to:

$$S_n = a_1 + a_2 + \dots + a_n = \begin{cases} n \cdot a_1 & q = 1\\ \frac{a_1(1-q^n)}{1-q} \cdot n & q \neq 1 \end{cases}$$

Example 8. Find the first term of a geometric progression in which the common ratio is 2 and the sum of eight first terms is 765.

Solution: We know that q = 2 and $S_8 = 765$. So, $a_1 \frac{1-2^8}{1-2} = 765$. Hence $a_1 = \frac{765}{255} = 3$.

DEFINITION

The sequence (a_n) <u>converges</u> to the number g if to every positive number ϵ there corresponds an index $n_0 \in \mathbf{N}$ such that $(n > n_0) \Longrightarrow (|a_n - g| < \epsilon)$ for all $n \in \mathbf{N}$. If no such limit exists, we say that (a_n) <u>diverges</u>.

We call g the <u>limit</u> of the sequence. It may happen that $g = \pm \infty$.

EXAMPLES

LIMIT THEOREMS

If sequences (a_n) and (b_n) converge (both limits exist and are finite), then

- Sum/Difference Rule: $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$,
- Constant Multiple Rule: $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$, where $c \in R$,
- Product Rule: $\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n),$
- Quotient Rule: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$, if $\lim_{n \to \infty} b_n \neq 0$,

•
$$\lim_{n \to \infty} (a_n)^p = (\lim_{n \to \infty} a_n)^p$$
, where $p \in Z \setminus \{0\}$,

•
$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n \to \infty} a_n}$$
, where $k \in N$

Remark

If the sequence (a_n) diverges, and if c is any number different then 0, then the sequence (ca_n) also diverges.

Theorem

If $\lim_{n \to \infty} a_n = g$, and if f is a function that is continuous at g and definied at all the a_n 's, then $\lim_{n \to \infty} f(a_n) = f(g)$.

Theorem

If (a_n) converges, then (a_n) is bounded. If (a_n) is unbounded, then (a_n) diverges.

LIMITS THAT ARISE FREQUENTLY

•
$$\lim_{n \to \infty} q^n = \begin{cases} \text{does not exist} & q \le -1 \\ 0 & |q| < 1 \\ 1 & q = 1 \\ \infty & q > 1 \end{cases}$$

- If a > 0, then $\lim_{n \to \infty} \sqrt[n]{a} = 1$.
- $\lim_{n \to \infty} \sqrt[n]{n} = 1.$

The Sandwich Theorem for Sequences

THEOREM OF TWO SEQUENCES

If $a_n \leq b_n$ for every $n \geq n_0 \in \mathbf{N}$ and $\lim_{n \to \infty} a_n = \infty$, then $\lim_{n \to \infty} b_n = \infty$ as well.

Theorem

Sequence $\left(1+\frac{1}{n}\right)^n$ converges to $e \ (\approx 2,7182818)$.

Remark

If
$$\lim_{n \to \infty} a_n = \infty$$
, then $\lim_{n \to \infty} \left(1 + \frac{1}{a_n} \right)^{a_n} = e.$

EXAMPLES

 $\begin{array}{l} \underline{\text{Example 9.}}_{n \to \infty} \lim_{n \to \infty} \frac{-4n^2 + n - 9}{3n^6 + 2n - 1} = \lim_{n \to \infty} \frac{-\frac{4}{n^4} + \frac{1}{n^5} - \frac{9}{n^6}}{3 + \frac{2}{n^5} - \frac{1}{n^6}} = \frac{0}{3} = 0. \\ \underline{\text{Example 10.}}_{n \to \infty} \lim_{n \to \infty} \frac{5 \cdot 9^n - 5^{n+1} + 3}{-3^{2n} + 2^{3n+1} - 1} = \lim_{n \to \infty} \frac{5 \cdot 9^n - 5 \cdot 5^n + 3}{-9^n + 2 \cdot 8^n - 1} = \lim_{n \to \infty} \frac{5 - 5 \cdot (\frac{5}{9})^n + \frac{3}{9^n}}{-1 + 2 \cdot (\frac{8}{9})^n - \frac{1}{9^n}} = -5. \\ \underline{\text{Example 11.}}_{n \to \infty} \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n + \sqrt{n + \sqrt{n}}}} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{\sqrt{n}}}{\sqrt{n + \sqrt{n + \sqrt{n}}}} = \lim_{n \to \infty} \frac{1}{\sqrt{\frac{n}{n} + \sqrt{\frac{n}{n^2} + \sqrt{\frac{n}{n^4}}}}} = \\ = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \sqrt{\frac{1}{n} + \sqrt{\frac{1}{n^3}}}}} = 1. \\ \underline{\text{Example 12.}}_{n \to \infty} \lim_{n \to \infty} \frac{\sqrt{e^n} + \pi^n + 8^n}{\sqrt{e^n} = ?. \end{array}$

We know that
$$8^n \leq e^n + \pi^n + 8^n \leq 8^n + 8^n + 8^n = 3 \cdot 8^n$$
.
So: $\sqrt{8^n} \leq \sqrt{e^n + \pi^n + 8^n} \leq \sqrt{3 \cdot 8^n}$.
We also know that $\lim_{n \to \infty} \sqrt[n]{8^n} = 8$ and $\lim_{n \to \infty} \sqrt[n]{3 \cdot 8^n} = \lim_{n \to \infty} 8 \cdot \sqrt[n]{3} = 8$.
Thus $\lim_{n \to \infty} \sqrt[n]{e^n + \pi^n + 8^n} = 8$.

Example 13. $\lim_{n \to \infty} (4 - \arctan n)^n = ?.$

We know that $-\frac{\pi}{2} < \arctan n < \frac{\pi}{2}$. So, it is true that: $4 - \arctan n > 4 - \frac{\pi}{2} > 2$ and $(4 - \arctan n)^n > 2^n$.

Since $\lim_{n\to\infty} 2^n = \infty$, then by the theorem of two sequences we have: $\lim_{n\to\infty} (4 - \arctan n)^n = \infty.$

 $\frac{\text{Example 14.}}{\underset{n \to \infty}{\text{Im}}} \lim_{n \to \infty} \left(\frac{n+5}{n}\right)^{3n} = \lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^{3n} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{\frac{n}{5}}\right)^{\frac{n}{5}}\right]^{15} = e^{15}.$ $\frac{\text{Example 15.}}{\underset{n \to \infty}{\text{Im}}} \lim_{n \to \infty} \left(\frac{1}{n} + \frac{2}{n} + \dots + \frac{n-1}{n}\right) = \lim_{n \to \infty} \frac{1 + 2 + \dots + n-1}{n} = \lim_{n \to \infty} \frac{\frac{(1 + (n-1))(n-1)}{2}}{n} = \lim_{n \to \infty} \frac{n-1}{2} = \infty.$

The sum of an infinite geometric sequence

If a_n is a geometric sequence with the common ratio |q| < 1 then $S = a_1 + a_2 + \cdots = \frac{a_1}{1-q}$.

Example 16. Calculate $7 + 2.1 + 0.63 + \dots$ **Solution.** It is easy to see that q = 0.3 < 1, so $S = \frac{7}{1-0.3} = 10$.

Example 17. Express 1.24(36) as a common fraction.

<u>Solution</u> 1.24(36) = 1.243636363636... = 1.24 + (0.0036 + 0.000036 + ...) = 1.24 + $\frac{0.36}{1-0.01}$ = 1.24 + $\frac{36}{9900}$ = $\frac{342}{275}$.