Before solving the following exercises, you should revise the following material:

- Basic calculus \rightarrow Derivatives \rightarrow Derivatives basics
- Basic calculus \rightarrow Derivatives \rightarrow Exercises derivatives

Exercise 1. Using the definition, calculate all partial derivatives at point P. Verify your results by calculating the same derivatives using derivation formulas.

a)
$$f(x,y) = \frac{x}{y}$$
, $P = (-1,1)$,
b) $f(x,y) = y \sin x$, $P = (0,\pi)$,
c) $f(x,y) = \sqrt[3]{xy}$, $P = (0,0)$,
d) $f(x,y,z) = x + 2xy - 3xyz$, $P = (1,2,3)$

Exercise 2. Check that the following functions are continuous in given points, but they do not have partial derivatives there.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, $P = (0,0)$, b) $f(x,y) = |x| + |y-1|$, $P = (0,1)$.

Exercise 3. Calculate the first order partial derivatives of the following functions.

$$\begin{split} a(x,y) &= x^2 + xy + y^2 + x^3 + y^3 + (xy)^2, & b(x,y,z) &= xy\sqrt{z} + yz\sqrt{x} + zx\sqrt{y}, \\ c(x,y) &= \ln(x^2 + y^2), & d(x,y,z) &= (\frac{y}{x})^z, \\ e(x,y) &= x^y + y^x + 5, & f(x,y,z) &= xy^2z^3 + e^{\sin(x^3y^2z)} + x^2 - y^3 + z - 7, \\ g(x,y,z) &= \cos^3(5x - y^3 + z) + \ln(z\ln xy), & h(x,y) &= \arctan(y\sqrt{x}) + \sin^2(3x^2 + xy - 5y^3). \end{split}$$

Exercise 4. Calculate all second order partial derivatives of functions from Exercise 3.

Exercise 5. Calculate all second order partial derivatives of the following functions.

$$a(x,y) = \ln(4x^2 + 2y^4 + 1), \qquad b(x,y) = ye^{xy}, \qquad c(x,y,z) = z\cos(x^2 + y^2),$$

$$d(x,y) = x\sin(x+y) + e^y, \qquad e(x,y) = (x-y)e^{3x+5y}, \qquad f(x,y) = x^y.$$

Exercise 6. Check if function u satisfies given equations.

a)
$$u(x,y) = x^y y^x$$
, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = (x+y+\ln u)u$,
b) $u(x,y) = \ln(e^x + e^y)$, $\frac{\partial^2 u}{\partial x^2} \cdot \frac{\partial^2 u}{\partial y^2} = (\frac{\partial^2 u}{\partial x \partial y})^2$,
c) $u(x,y) = \ln x \ln y$, $\frac{\partial^2 u}{\partial x^2} \cdot \frac{\partial^2 u}{\partial y^2} - u(\frac{\partial^2 u}{\partial x \partial y})^2 = 0$,
d) $u(x,y) = 2\cos^2(y-\frac{x}{2})$, $2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} = 0$,
e) $u(x,y) = x \sin y + y \sin x$, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -u$,
f) $u(x,y) = xe^y + ye^x$, $u_{xxx} + u_{yyy} = xu_{xyy} + yu_{xxy}$.

Exercise 7. Write equations of planes tangent to graphs of the following functions at given points.

$$\begin{split} &a(x,y) = x^y, \quad P = (2,4,16), \\ &b(x,y) = y \ln(2 + x^2 y - y^2), \quad P = (2,1,b(2,1)), \\ &c(x,y) = \frac{\arcsin x}{\arcsin y}, \quad P = (-\frac{1}{2},\frac{\sqrt{3}}{2},-1), \\ &d(x,y) = e^{x \cos y}, \quad P = (1,\pi,\frac{1}{e}), \\ &e(x,y) = \sin x \cos x, \quad P = (\frac{\pi}{4},\frac{\pi}{4},\frac{1}{2}). \end{split}$$

Exercise 8. Using the total differentials, calculate the approximated values of the following expressions.

a)
$$\sqrt[3]{(2.06)^2 + (1.97)^2}$$
, b) $0.98 \ln 1.01$, c) $(1.03)^{3.01}$, d) $\arctan \frac{0.02}{1.99}$,
e) $\sqrt{(1.06)^2 + (1.97)^3}$, f) $(1.95)^2 e^{0.02}$, g) $\frac{(1.01)^3 - (2.99)^2}{(1.01)^3 + (2.99)^2}$, h) $\ln(\sqrt{1.04} + \sqrt[4]{0.96} - 1)$.