Before solving the following exercises, you should revise the following material:

- Basic calculus \rightarrow Derivatives \rightarrow Derivatives - basics
- Basic calculus \rightarrow Derivatives \rightarrow Exercises - derivatives

Exercise 1. Using the definition, calculate all partial derivatives at point P. Verify your results by calculating the same derivatives using derivation formulas.
a) $f(x, y)=\frac{x}{y}, \quad P=(-1,1)$,
b) $f(x, y)=y \sin x, P=(0, \pi)$,
c) $f(x, y)=\sqrt[3]{x y}, \quad P=(0,0)$,
d) $f(x, y, z)=x+2 x y-3 x y z, P=(1,2,3)$.

Exercise 2. Check that the following functions are continuous in given points, but they do not have partial derivatives there.
a) $f(x, y)=\sqrt{x^{2}+y^{2}}, \quad P=(0,0)$,
b) $f(x, y)=|x|+|y-1|, P=(0,1)$.

Exercise 3. Calculate the first order partial derivatives of the following functions.

$$
\begin{array}{ll}
a(x, y)=x^{2}+x y+y^{2}+x^{3}+y^{3}+(x y)^{2}, & b(x, y, z)=x y \sqrt{z}+y z \sqrt{x}+z x \sqrt{y} \\
c(x, y)=\ln \left(x^{2}+y^{2}\right), & d(x, y, z)=\left(\frac{y}{x}\right)^{z} \\
e(x, y)=x^{y}+y^{x}+5, & f(x, y, z)=x y^{2} z^{3}+e^{\sin \left(x^{3} y^{2} z\right)}+x^{2}-y^{3}+z-7, \\
g(x, y, z)=\cos ^{3}\left(5 x-y^{3}+z\right)+\ln (z \ln x y), & h(x, y)=\operatorname{arctg}(y \sqrt{x})+\sin ^{2}\left(3 x^{2}+x y-5 y^{3}\right)
\end{array}
$$

Exercise 4. Calculate all second order partial derivatives of functions from Exercise 3.

Exercise 5. Calculate all second order partial derivatives of the following functions.

$$
\begin{array}{lll}
a(x, y)=\ln \left(4 x^{2}+2 y^{4}+1\right), & b(x, y)=y e^{x y}, & c(x, y, z)=z \cos \left(x^{2}+y^{2}\right), \\
d(x, y)=x \sin (x+y)+e^{y}, & e(x, y)=(x-y) e^{3 x+5 y}, & f(x, y)=x^{y} .
\end{array}
$$

Exercise 6. Check if function u satisfies given equations.
a) $u(x, y)=x^{y} y^{x}, \quad x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(x+y+\ln u) u$,
b) $u(x, y)=\ln \left(e^{x}+e^{y}\right), \quad \frac{\partial^{2} u}{\partial x^{2}} \cdot \frac{\partial^{2} u}{\partial y^{2}}=\left(\frac{\partial^{2} u}{\partial x \partial y}\right)^{2}$,
c) $u(x, y)=\ln x \ln y, \quad \frac{\partial^{2} u}{\partial x^{2}} \cdot \frac{\partial^{2} u}{\partial y^{2}}-u\left(\frac{\partial^{2} u}{\partial x \partial y}\right)^{2}=0$,
d) $u(x, y)=2 \cos ^{2}\left(y-\frac{x}{2}\right), \quad 2 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}=0$,
e) $u(x, y)=x \sin y+y \sin x, \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-u$,
f) $u(x, y)=x e^{y}+y e^{x}, \quad u_{x x x}+u_{y y y}=x u_{x y y}+y u_{x x y}$.

Exercise 7. Write equations of planes tangent to graphs of the following functions at given points.

$$
\begin{aligned}
& a(x, y)=x^{y}, \quad P=(2,4,16) \\
& b(x, y)=y \ln \left(2+x^{2} y-y^{2}\right), \quad P=(2,1, b(2,1)), \\
& c(x, y)=\frac{\arcsin x}{\arcsin y}, \quad P=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2},-1\right) \\
& d(x, y)=e^{x \cos y}, \quad P=\left(1, \pi, \frac{1}{e}\right) \\
& e(x, y)=\sin x \cos x, \quad P=\left(\frac{\pi}{4}, \frac{\pi}{4}, \frac{1}{2}\right)
\end{aligned}
$$

Exercise 8. Using the total differentials, calculate the approximated values of the following expressions.
a) $\sqrt[3]{(2.06)^{2}+(1.97)^{2}}$,
b) $0.98 \ln 1.01$,
c) $(1.03)^{3.01}$,
d) $\arctan \frac{0.02}{1.99}$,
e) $\sqrt{(1.06)^{2}+(1.97)^{3}}$,
f) $(1.95)^{2} e^{0.02}$,
g) $\frac{(1.01)^{3}-(2.99)^{2}}{(1.01)^{3}+(2.99)^{2}}$,
h) $\ln (\sqrt{1.04}+\sqrt[4]{0.96}-1)$.

