Exercise 1. Find minima, maxima and saddle points of the following functions. Plot each function in the surrounding of the critical points using the 3D function plotter.

$$
\begin{array}{ll}
a(x, y)=3 x^{3}+3 x^{2} y-y^{3}-15 x, & b(x, y)=e^{x-y}\left(x^{2}-2 y^{2}\right) \\
c(x, y)=e^{2 x}\left(x+y^{2}+2 y\right), & d(x, y)=x^{3}-4 x y+2 y^{2}, \\
e(x, y)=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}, & f(x, y)=x^{3}+y^{3}-3 x y \\
g(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}, & h(x, y)=x^{3}+8 y^{3}-6 x y+5, \\
i(x, y)=x y \ln \left(x^{2}+y^{2}\right), & j(x, y)=x^{3}+3 x y^{2}-15 x-12 y .
\end{array}
$$

Remark: Find minima, maxima and saddle points of functions i and j only for $(x, y) \in[0, \infty) \times[0, \infty)$. For function i, notice that $\ln \left(x^{2}+y^{2}\right)=0$ for $(x, y)=\left(\frac{1}{\sqrt{2 e}}, \frac{1}{\sqrt{2 e}}\right)$.

Exercise 2. Find the largest values, the smallest values and the saddle points of the following functions in a given region. Plot each function in the surrounding of the given region using the 3 D function plotter.

$$
\begin{array}{ll}
a(x, y)=x^{2} y(4-x-y) & \text { in a triangle with sides along lines: } x=0, y=0, x+y+6=0, \\
b(x, y)=x^{2}+y^{2}-x y+x+y & \text { in a triangle with sides along lines: } x=0, y=0, x+y+3=0, \\
c(x, y)=x^{2}+2 x y-4 x+8 y & \text { in a rectangle with sides along lines: } x=0, x=1, y=0, y=2, \\
d(x, y)=x^{3}+y^{3}-9 x y+27 & \text { in a square with sides along lines: } x=0, x=1, y=0, y=1, \\
e(x, y)=x y & \text { in a square given by equation: }|x|+|y|=1, \\
f(x, y)=x y & \text { in a circle given by equation: } x^{2}+y^{2} \leq 1, \\
g(x, y)=2 x^{2}-2 y^{2} & \text { in a circle given by equation: } x^{2}+y^{2} \leq 4, \\
h(x, y)=x+y & \text { in a circle given by equation: } x^{2}+y^{2} \leq 4, \\
i(x, y)=x^{2}-2 x y+2 y^{2}-2 y & \text { in a region bounded by curves: } y=\frac{1}{2} x^{2}, y=2 .
\end{array}
$$

Exercise 3. Using the 3D plotter and a method of trials and errors (or deep thoughts ;)), find a function that:
a) has infinitely many mimima and maxima,
b) has infinitely many saddle points,
c) has a saddle point and a minimum,
d) has a saddle point and a maximum,
e) has a minimum and a maximum.

Verify your finding by applying the minimum-maximum test.

Remark: When looking for a function that has infinitely many minima, maxima or saddle points, it is worthwhile to try out combinations of polynomials and trigonometric functions.

