$z=A x+B y+C$

The graph of $z=A x+B y+C$ is a plane Π having a normal vector $\vec{n}=[-A,-B, 1]$ and passing through point $(0,0, C)$. When plotting such a plane, it is more comfortable to express it in form $\Pi: \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ - then Π intersects the axes of the coordinate system at points $(a, 0,0),(0, b, 0)$ and $(0,0, c)$.

Example 1. Draw the graph of $z=-\frac{x+2 y-6}{3}$.

Solution:

$$
\begin{gathered}
z=-\frac{x+2 y-6}{3} \\
-3 z=x+2 y-6 \\
x+2 y+3 z=6 \\
\frac{x}{6}+\frac{y}{3}+\frac{z}{2}=1
\end{gathered}
$$

The graph of z is a plane intersecting the coordinate system axes at $(6,0,0)$, $(0,3,0)$ and $(0,0,2)$.

$$
z=A\left(x^{2}+y^{2}\right)
$$

The graph of such a function is a paraboloid of revolution.

To obtain a graph of $z=A\left((x-p)^{2}+\right.$ $\left.(y-q)^{2}\right)+r$ you have to move the graph by a vector of $\vec{v}=[p, q, r]$.

$z=\sqrt{R^{2}-\left((x-a)^{2}+(y-b)^{2}\right)}+c$

The graph of such a function is a hemisphere with a radius equal R and a center in (a, b, c).

$z=A \sqrt{x^{2}+y^{2}}$

The graph of such a function is a conical surface that may also be obtained by revolving the graph of line $z_{1}=k x, y=0, x \geq 0$ about the $O Z$ axis.

