INTRODUCTION

From now on we will refer to the definite integral $\int_{a}^{b} f(x) d x$ of a function f that is continuous in an interval $[a, b]$ as a single integral. We will define the double integral of a function that is continuous on a certain type of plane region. Consider a region R in the $x y$ plane (do not mistake this notation with the real number set \mathbf{R}), a function f that is nonnegative and continuous on R, and the solid region D.

Consider a region R in the $x y$ plane, a function f that is nonnegative and continuous on R, and the solid region D bounded below by R, above by the graph of f, and on the sides by the vertical surface passing through the boundary of R.

We call D the solid region between the graph of f and R.
Our goal is to define the volume of D.

DEFINITION

If for any $\varepsilon>0$ there is a number $\delta>0$ such that a partition P of R into n subrectangles whose dimensions are less than δ, then

$$
\int_{R} \int f(x, y) d x d y \stackrel{\text { def }}{=} \lim _{\delta(P) \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right)(\Delta x)(\Delta y)
$$

where the point $\left(x_{k}^{*}, y_{k}^{*}\right)$ is arbitrarily chosen for $1 \leq k \leq n$.
Finally, we relax the assumption that R is a rectangle and assume only that R is bounded and contains its boundary. Then R is contained in a rectangle R^{\prime}. We partition R^{\prime} into a collection P of rectangels. In general, some of the rectangles in P will be entirely contained in R, some only partially contained in R, and some will contain no point of R.

Then

$$
\int_{R} \int f(x, y) d P \stackrel{\text { def }}{=} \int_{R^{\prime}} \int f^{*}(x, y) d P
$$

where $f^{*}(x, y)=\left\{\begin{array}{cl}f(x, y) & (x, y) \in R \\ 0 & (x, y) \in R^{\prime}\end{array}\right.$.

Definition

Let R be a a bounded region in the $x y$ plane and f a function continuous on R. If f is nonnegative and integrable on R, then the volume V of the solid region between the graph of f and R is given by

$$
V=\int_{R} \int f(x, y) d P
$$

Definition

A plane region R is vertically simple if there are two continuous functions g_{1} and g_{2} in the interval $[a, b]$ such that $g_{1}(x) \leq g_{2}(x)$ for $a \leq x \leq b$ and such that R is the region between graphs of g_{1} and g_{2} in $[a, b]$. In this case we say that R is the vertically simple region between the graphs of g_{1} and g_{2} in $[a, b]$.
A plane region R is horizontally simple if there are two continuous functions h_{1} and h_{2} in the interval $[c, d]$ such that $h_{1}(y) \leq h_{2}(y)$ for $c \leq y \leq d$ and such that R is the region between graphs of h_{1} and h_{2} in $[c, d]$. In this case we say that R is the horizontally simple region between the graphs of h_{1} and h_{2} in $[c, d]$.

A plane region R is simple if it is both vertically simple and horizontally simple.

Evaluation of Double Integrals - Iterated Integrals

a) If f is a continuous function on the vertically simple region

$$
D=\{(x, y): a \leq x \leq b, g(x) \leq y \leq h(x)\}
$$

then

$$
\int_{D} \int f(x, y) d P=\int_{a}^{b}\left(\int_{g(x)}^{h(x)} f(x, y) d y\right) d x
$$

b) If f is a continuous function on the horizontally simple region

$$
D=\{(x, y): c \leq y \leq d, p(y) \leq x \leq q(y)\}
$$

then

$$
\int_{D} \int f(x, y) d P=\int_{c}^{d}\left(\int_{p(y)}^{q(y)} f(x, y) d x\right) d y
$$

Theorem

Let f and g are integrable on D, then

- $\int_{D} \int(f(x, y)+g(x, y)) d x d y=\int_{D} \int f(x, y) d x d y+\int_{D} \int g(x, y) d x d y ;$
- $\int_{D} \int(f(x, y)-g(x, y)) d x d y=\int_{D} \int f(x, y) d x d y-\int_{D} \int g(x, y) d x d y$;
- $\int_{D} \int(c f(x, y)) d x d y=c \int_{D} \int f(x, y) d x d y$, where $c \in R$.

Example
Sketch the region over which the integration

$$
\int_{0}^{1} \int_{x}^{-x+2}(2 x+1) d y d x
$$

takes place and write an equivalent integral with the order of integration reversed. Evaluate both integrals.

Double Integrals in Polar Coordinates

For any point P other than the origin, let r be the distance between P and the origin, and φ an angle having its initial side on the positive x axis and its terminal side on the line segment joining P and the origin. The pair (r, φ) is called a set of polar coordinates for the point P. Every point (x, y) in the plane has both Cartesian and polar coordinates (r, φ) :

$$
\left\{\begin{array}{l}
x=r \cos \varphi \\
y=r \sin \varphi
\end{array}\right.
$$

Let Δ and D be regions in $u v$ plane and $x y$ plane. Assume we have a change of variable $x=x(u, v)$ and $y=y(u, v)$. Suppose that the region Δ in the $r \varphi$ - plane is transformed to a region D in the $x y$ - plane under this transformation.

Define the Jacobian of the transformation as

$$
J_{T}(u, v) \stackrel{\text { def }}{=}\left|\begin{array}{cc}
\frac{\partial \varphi}{\partial u}(u, v) & \frac{\partial \varphi}{\partial v}(u, v) \\
\frac{\partial \psi}{\partial u}(u, v) & \frac{\partial \psi}{\partial v}(u, v)
\end{array}\right|
$$

It turns out that this correctly describes the relationship between the element of area $d x d y$ and the corresponding area element $d u d v$.
With this definition, the change of variable formula becomes:

$$
\int_{D} \int f(x, y) d x d y=\int_{\Delta} \int f(\varphi(u, v), \psi(u, v))\left|J_{T}(u, v)\right| d u d v .
$$

Note that the formula involves the modulus of the Jacobian.
We first compute the Jacobian for polar coordinates:

$$
J_{T}=\left|\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right|=r .
$$

Using the change of variable formula, we have the following result for polar coordinates:

$$
\int_{D} \int_{D} f(x, y) d x d y=\int_{\Delta} \int f(r \cos \varphi, r \sin \varphi) r d r d \varphi
$$

Polar Coordinates - General Form

$$
\left\{\begin{array}{l}
x=\operatorname{ar} \cos \varphi \\
y=b r \sin \varphi
\end{array}\right.
$$

where $a>0, b>0$ and $J_{T}=a b r$.

Applications of Double Integrals

- Areas of Bounded Regions in the Plane

The area of a closed bounded plane region R is given by the formula

$$
\text { Area }=\int_{R} \int d x d y
$$

- Let R be a a bounded region in the $x y$ plane and f be a function continuous on R. If f is nonnegative and integrable on R, then the volume of the solid region between the graph of f and R is given by

$$
\text { Volume }=\int_{R} \int f(x, y) d x d y
$$

Let R be a a bounded region in the $x y$ plane and g_{1}, g_{2} be continuous functions on R. If g_{1} and g_{2} are integrable on R such that $g_{1}(x, y) \leq g_{2}(x, y)$, then the volume of the solid region between the graph of g_{1} and g_{2} is given by

$$
\text { Volume }=\int_{R} \int\left[g_{2}(x, y)-g_{1}(x, y)\right] d x d y
$$

- Another important application of double integrals is is the calculation of surface area.

Let S be the surface $z=f(x, y)$ where the points (x, y) come from the given region R in the $x y$ plane. Then

$$
\text { Area }_{S}=\int_{R} \int \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d x d y
$$

where f and its first partial derivatives are continuous.

- First and Second Moments and Centers of Mass

Mass and moments formulas for thin plates R covering regions in the $x y$ plane:
Density:

$$
\delta(x, y)
$$

Mass:

$$
M=\iint_{R} \delta(x, y) d x d y
$$

First moments:

$$
M_{x}=\iint_{R} y \delta(x, y) d x d y, \quad M_{y}=\iint_{R} x \delta(x, y) d x d y
$$

Center of mass:

$$
x=\frac{M_{y}}{M}, \quad y=\frac{M_{x}}{M}
$$

Moments of interia (second moments):
About the x-axis:

$$
I_{x}=\iint_{R} y^{2} \delta(x, y) d x d y
$$

About the y-axis:

$$
I_{y}=\iint_{R} x^{2} \delta(x, y) d x d y
$$

About the origin:

$$
I_{o}=\iint_{R}\left(x^{2}+y^{2}\right) \delta(x, y) d x d y
$$

(also called the polar moment of interia about the origin)

