Double Integrals - Techniques and Examples

Iterated integrals on a rectangle

If function f is continuous on an integral $[a, b] \times[c, d]$, then:

$$
\iint_{[a, b] \times[c, d]} f(x, y) d x d y=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y .
$$

Notation

Instead of $\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x$ we may also write $\int_{a}^{b} d x \int_{c}^{d} f(x, y) d y$.
Instead of $\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y$ we may also write $\int_{c}^{d} d y \int_{a}^{b} f(x, y) d x$.

Example 1. Calculate $\iint_{R} \frac{x}{y^{2}} d x d y$, where $R=[1,2] \times[4,6]$.
Solution: $\iint_{R} \frac{x}{y^{2}} d x d y=\iint_{[1,2] \times[4,6]} \frac{x}{y^{2}} d x d y=\int_{1}^{2}\left(\int_{4}^{6} \frac{x}{y^{2}} d y\right) d x=\int_{1}^{2}\left(\left[-\frac{x}{y}\right]_{y=4}^{y=6}\right) d x=\int_{1}^{2}\left(\frac{x}{4}-\frac{x}{6}\right) d x=$ $\int_{1}^{2} \frac{x}{12} d x=\left[\frac{x^{2}}{24}\right]_{x=1}^{x=2}=\frac{4-1}{24}=\frac{3}{24}=\frac{1}{8}$.

A double integral of a function with separable variables

If function f is of form $f(x, y)=g(x) \cdot h(y)$ and g is continuous in $[a, b]$ and h is continuous in $[c, d]$, then:

$$
\iint_{[a, b] \times[c, d]} f(x, y) d x d y=\left(\int_{a}^{b} g(x) d x\right) \cdot\left(\int_{c}^{d} h(y) d y\right) .
$$

Example 2. Calculate $\iint_{R} \frac{x}{y^{2}} d x d y$, where $R=[1,2] \times[4,6]$, separating variables.
Solution: $\iint_{R} \frac{x}{y^{2}} d x d y=\iint_{R} x \cdot \frac{1}{y^{2}} d x d y=\left(\int_{1}^{2} x d x\right) \cdot\left(\int_{4}^{6} \frac{d y}{y^{2}}\right)=\left(\left[\frac{x^{2}}{2}\right]_{x=1}^{x=2}\right) \cdot\left(\left[-\frac{1}{y}\right]_{y=4}^{y=6}\right)=$ $\left(\frac{4-1}{2}\right) \cdot\left(-\frac{1}{6}+\frac{1}{4}\right)=\frac{3}{2} \cdot \frac{-2+3}{12}=\frac{3}{24}=\frac{1}{8}$.

A double integral over a simple region
If f is a continuous function on the vertically simple region

$$
D=\{(x, y): a \leq x \leq b, g(x) \leq y \leq h(x)\},
$$

then

$$
\iint_{D} f(x, y) d P=\int_{a}^{b}\left(\int_{g(x)}^{h(x)} f(x, y) d y\right) d x
$$

If f is a continuous function on the horizontally simple region

$$
D=\{(x, y): c \leq y \leq d, p(y) \leq x \leq q(y)\}
$$

then

$$
\iint_{D} f(x, y) d P=\int_{c}^{d}\left(\int_{p(y)}^{q(y)} f(x, y) d x\right) d y
$$

Example 3. Evaluate $\iint_{D}(x+y) d x d y$ over a region bounded by curves $x y=6$ and $x+y=7$. Sketch a diagram of the region.
Solution: From the system of equations of $x y=6$ and $x+y=7$ (or: $y=\frac{6}{x}, y=7-x$) we obtain two intersection points: $A=(1,6)$ and $B=(6,1)$. Region D is vertically simple, so:

$$
\begin{aligned}
\iint_{D}(x+y) d x d y & =\int_{1}^{6}\left(\int_{y=\frac{6}{x}}^{y=7-x}(x+y) d y\right) d x=\int_{1}^{6}\left(\left[x y+\frac{y^{2}}{2}\right]_{y=\frac{6}{x}}^{y=7-x}\right) d x \\
& =\int_{1}^{6}\left(x(7-x)+\frac{(7-x)^{2}}{2}-x \cdot \frac{6}{x}-\frac{36}{2 x^{2}}\right) d x \\
& =\int_{1}^{6}\left(-\frac{x^{2}}{2}-\frac{18}{x^{2}}+\frac{37}{2}\right) d x=\left[-\frac{x^{3}}{6}+\frac{18}{x}+\frac{37 x}{2}\right]_{1}^{6}=\frac{125}{3} .
\end{aligned}
$$

Example 4. Evaluate $\iint_{D}(x-y) d x d y$ over a region bounded by curves $x=y^{2}$ and $x=\frac{y^{2}}{2}+1$. Sketch a diagram of the region.
Solution: From the system of equations of $x=y^{2}$ and $x=\frac{y^{2}}{2}+1$ we obtain two intersection points: $(-\sqrt{2}, 2)$ and $(\sqrt{2}, 2)$. Region D is horizontally simple, so:
$\iint_{D}(x-y) d x d y=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\int_{y^{2}}^{\frac{y^{2}}{2}+1}(x-y) d x\right) d y=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\left[\frac{x^{2}}{2}-x y\right]_{x=y^{2}}^{x=\frac{y^{2}}{2}+1}\right) d y=$

$$
\begin{aligned}
& =\int_{-\sqrt{2}}^{\sqrt{2}}\left(\frac{\left(\frac{y^{2}}{2}+1\right)^{2}}{2}-\left(\frac{y^{2}}{2}+1\right) y-\frac{y^{4}}{2}+y^{3}\right) d y=\int_{-\sqrt{2}}^{\sqrt{2}}\left(-\frac{3 y^{4}}{8}+\frac{y^{3}}{2}+\frac{y^{2}}{2}-y+\frac{1}{2}\right) d y= \\
& =\left[-\frac{3 y^{5}}{40}+\frac{y^{4}}{8}+\frac{y^{3}}{6}-\frac{y^{2}}{2}+\frac{y}{2}\right]_{-\sqrt{2}}^{\sqrt{2}}=\frac{16 \sqrt{2}}{15} .
\end{aligned}
$$

Iterated integrals in a reversed order

Example 5. Sketch the region over which the integration $\int_{1}^{3} \int_{-x+2}^{x}(2 x+1) d y d x$ takes place and write an equivalent integral with the order of integration reversed. Evaluate both integrals.

Solution: First let us evaluate:

$$
\begin{aligned}
\int_{1}^{3} \int_{-x+2}^{x}(2 x+1) d y d x & =\int_{1}^{3}\left([y(2 x+1)]_{-x+2}^{x}\right) d x=\int_{1}^{3}(x(2 x+1)-(-x+2)(2 x+1)) d x \\
& =\int_{1}^{3}\left(-2-2 x+4 x^{2}\right) d x=\left[-2 x-x^{2}+\frac{4 x^{3}}{3}\right]_{1}^{3}=\frac{68}{3}
\end{aligned}
$$

To reverse the order of integration, we need to divide the region into two parts that are horizontally simple. Now:

$$
\begin{aligned}
\int_{1}^{3} \int_{-x+2}^{x}(2 x+1) d y d x & =\int_{1}^{3} \int_{y}^{3}(2 x+1) d x d y+\int_{-1}^{1} \int_{-y+2}^{3}(2 x+1) d x d y \\
& =\int_{1}^{3}\left[x+x^{2}\right]_{y}^{3} d y+\int_{-1}^{1}\left[x+x^{2}\right]_{-y+2}^{3} d y=\int_{1}^{3}\left(12-y-y^{2}\right) d y+\int_{-1}^{1}\left(6+5 y-y^{2}\right) d y \\
& =\left[12 y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{1}^{3}+\left[6 y+\frac{5 y^{2}}{2}-\frac{y^{3}}{3}\right]_{-1}^{1}=\frac{34}{3}+\frac{34}{3}=\frac{68}{3}
\end{aligned}
$$

Polar coordinates

For any point P other than the origin, let r be the distance between P and the origin, and φ an angle having its initial side on the positive x axis and its terminal side on the line segment joining P and the origin. The pair (r, φ) is called a set of polar coordinates for the point P. Every point (x, y) in the plane has both Cartesian and polar coordinates (r, φ) :

$$
\left\{\begin{array}{l}
x=r \cos \varphi \\
y=r \sin \varphi
\end{array} .\right.
$$

We have the following result for polar coordinates:

$$
\int_{D} \int_{D} f(x, y) d x d y=\int_{\Delta} \int f(r \cos \varphi, r \sin \varphi) r d r d \varphi
$$

Example 6. Using polar coordinates, calculate $\iint_{D} x y^{2} d x d y$ where $D: x^{2}+y^{2} \leq 4, x \geq 0$.

Solution: The region of integration is a semicircle with radius equal 2. Therefore, the region in polar coordinates is given by $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and $0 \leq r \leq 2$.

After substituting x and y with polar coordinates, we have:

$$
\begin{aligned}
\iint_{D} x y^{2} d x d y & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\int_{0}^{2}(r \cos \theta) \cdot(r \sin \theta)^{2} r d r\right) d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\int_{0}^{2} r^{4} \sin ^{2} \theta \cos \theta d r\right) d \theta \\
& =\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta \cos \theta d \theta\right) \cdot\left(\int_{0}^{2} r^{4} d r\right)=\left[\frac{\sin ^{3} \theta}{3}\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdot\left[\frac{r^{5}}{5}\right]_{0}^{2}=\frac{64}{15}
\end{aligned}
$$

Example 7. Using polar coordinates, calculate $\iint_{D}\left(x^{2}+y^{2}\right) d x d y$, where $D: x^{2}+y^{2}-2 y \leq 0$.
Solution (a): Let us represent the equation describing D in a different form:

$$
\begin{gathered}
x^{2}+y^{2}-2 y \leq 0 \\
x^{2}+\left(y^{2}-2 y+1\right)-1 \leq 0 \\
x^{2}+(y-1)^{2} \leq 1
\end{gathered}
$$

Such an equation describes a circle with the origin in $(0,1)$, so we cannot describe it with polar coordinates as easily as in Example 6. Let us substitute $x=r \cos \theta$ and $y=r \sin \theta$:

$$
\begin{gathered}
x^{2}+y^{2}-2 y \leq 0 \\
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r \sin \theta \leq 0 \\
r \leq 2 \sin \theta
\end{gathered}
$$

the integral is equal to:

$$
\begin{aligned}
\iint_{D}\left(x^{2}+y^{2}\right) d x d y & =\int_{0}^{\pi}\left(\int_{0}^{2 \sin \theta} r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) r d r\right) d \theta=\int_{0}^{\pi}\left(\int_{0}^{2 \sin \theta} r^{3} d r\right) d \theta=\int_{0}^{\pi}\left[\frac{r^{4}}{4}\right]_{0}^{\sin \theta} d \theta \\
& =4 \int_{0}^{\pi} \sin ^{4} \theta d \theta=4\left[\frac{3 \theta}{8}-\frac{\sin 2 \theta}{4}+\frac{\sin 4 \theta}{32}\right]_{0}^{\pi}=\frac{3 \pi}{2}
\end{aligned}
$$

Angle θ ranges from 0 to only π, because for $\theta \in(\pi, 2 \pi]$ the radius would be negative - which is impossible.
Solution (b): Since the circle is moved by a vector of $\vec{v}=(0,1)$, then we can also move the function $x^{2}+y^{2}$ by the same vector. The new function will be $x^{2}+(y-1)^{2}$. We can now use the method from Example 6:

$$
\iint_{D}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{2 \pi}\left(\int_{0}^{1}\left(r^{2} \cos ^{2} \theta+(r \sin \theta-1)^{2}\right) r d r\right) d \theta=\cdots=\frac{3 \pi}{2} .
$$

Area of a bounded region in the plane

The area of a closed bounded plane region R is given by the formula

$$
\text { Area }=\iint_{R} 1 d x d y
$$

Example 8. Calculate the area of a region bounded by curves $y=\frac{1}{x}, y=\sqrt{x}$ and a line $x=2$. Sketch the region.
Solution: The area is equal to:

$$
\int_{1}^{2}\left(\int_{y=\frac{1}{x}}^{y=\sqrt{x}} 1 d y\right) d x=\int_{1}^{2}[y]_{y=\frac{1}{x}}^{y=\sqrt{x}} d x=\int_{1}^{2}\left(\sqrt{x}-\frac{1}{x}\right) d x=\left[\frac{2}{3} x^{\frac{3}{2}}-\ln |x|\right]_{1}^{2}=\frac{1}{3}(-2+4 \sqrt{2}-\ln 8)
$$

Volume

Let R be a a bounded region in the $O X Y$ plane and f be a function continuous on R. If f is nonnegative and integrable on R, then the volume of the solid region between the graph of f and R is given by

$$
\text { Volume }=\iint_{R} f(x, y) d x d y
$$

Let R be a a bounded region in the $x y$ plane and g_{1}, g_{2} be continuous functions on R. If g_{1} and g_{2} are integrable on R such that $g_{1}(x, y) \leq g_{2}(x, y)$, then the volume of the solid region between the graph of g_{1} and g_{2} is given by

$$
\text { Volume }=\iint_{R}\left(g_{2}(x, y)-g_{1}(x, y)\right) d x d y
$$

Example 9. Calculate the volume of a solid bounded by curves $y=x^{2}, y=1, z=0, z=2 y$. solution: The region of integration is bounded by $y=x^{2}$ and $y=1$ and $f(x, y)=2 y$. Therefore:

$$
\begin{aligned}
\text { Volume } & =\int_{x=-1}^{x=1}\left(\int_{y=x^{2}}^{y=1} 2 y d y\right) d x=\int_{x=-1}^{x=1}\left[y^{2}\right]_{y=x^{2}}^{y=1} d x=\int_{x=-1}^{x=1}\left(1-x^{4}\right) d x=\left[x-\frac{x^{5}}{5}\right]_{-1}^{1} \\
& =1-\frac{1}{5}-\left(-1+\frac{1}{5}\right)=2-\frac{2}{5}=\frac{8}{5} .
\end{aligned}
$$

Surface

Let S be the surface $z=f(x, y)$ where the points (x, y) come from the given region R in the OXY plane. Then

$$
\text { Area }_{S}=\iint_{R} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d x d y
$$

where f and its first partial derivatives are continuous.
Example 10. Calculate the surface of a plane $2 x+2 y+z=8$ bounded by the coordinate system axes.
Solution: After transformations of the equation of a plane, we have $\frac{x}{4}+\frac{y}{4}+\frac{z}{8}=1$, so the plane intersects the coordinate system axes at points $A=(4,0,0), B=(0,4,0)$ and $C=(0,0,8)$. Therefore, the region of integration is bounded by $x=0, y=0, y=-x+4$. We also have
$f(x, y)=z=8-2 x-2 y$, so $\frac{\partial f}{\partial x}=-2$ and $\frac{\partial f}{\partial y}=-2$. Therefore:

$$
\begin{aligned}
\text { Surface } & =\int_{x=0}^{x=4}\left(\int_{y=0}^{y=-x+4} \sqrt{1+(-2)^{2}+(-2)^{2}} d y\right) d x=\int_{x=0}^{x=4}\left(\int_{y=0}^{y=-x+4} \sqrt{9} d y\right) d x=3 \int_{x=0}^{x=4}\left(\int_{y=0}^{y=-x+4} 1 d y\right) d x \\
& =3 \int_{x=0}^{x=4}[y]_{y=0}^{y=-x+4} d x=3 \int_{x=0}^{x=4}(-x+4) d x=3\left[-\frac{x^{2}}{2}+4 x\right]_{0}^{4}=24 .
\end{aligned}
$$

