Proper limit at a point (Heine's definition)

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a function. Function f has a proper limit g at a point $\left(x_{0}, y_{0}\right)$

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=g
$$

if and only if for every sequence $\left(x_{n}, y_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=\left(x_{0}, y_{0}\right)$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)=g
$$

Improper limit at a point (Heine's definition)

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a function. Function f has an improper limit $\pm \infty$ at a point $\left(x_{0}, y_{0}\right)$

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)= \pm \infty
$$

if and only if for every sequence $\left(x_{n}, y_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=\left(x_{0}, y_{0}\right)$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)= \pm \infty
$$

Remark

Heine's definition of a limit may be easily used to show that a limit does not exist - it is enough to find two different sequences $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)$ and $\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)$ and show that $f\left(x_{n}^{\prime}, y_{n}^{\prime}\right)$ tends to a different number than $f\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)$.

Limits That Arise Frequently

Once you substitute sequences for x and y, you will need to use some commonly used formulas:

- $\lim _{n \rightarrow \infty} q^{n}=\left\{\begin{array}{cc}\text { does not exist } & q \leq-1 \\ 0 & |q|<1 \\ 1 & q=1 \\ \infty & q>1\end{array}\right.$.
- If $a>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
- If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty}\left(1+\frac{1}{a_{n}}\right)^{a_{n}}=e$.
- $\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=1$.

Examples

Example 1. Show that a limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{x+y}$ does not exist.
Solution: We will find two sequences that both tend to $(0,0)$, but for which function $f(x, y)=$ $\frac{x}{x+y}$ approaches different numbers. Let the sequences be $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\frac{1}{n}, 0\right)$ and $\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\left(0, \frac{1}{n}\right)$.

Now, let us calculate two limits:

- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n}+0}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n}}=1$.
- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\lim _{n \rightarrow \infty} \frac{0}{0+\frac{1}{n}}=0$.

Obviously $1 \neq 0$, so it is not true that for every sequence $\left(x_{n}, y_{n}\right)$ function $f\left(x_{n}, y_{n}\right)$ tends to the same number as n approaches infinity. Therefore, function $f(x, y)=\frac{x}{x+y}$ does not have a limit at a point $(0,0)$.

We can informally check our result by plotting this function in the neighbourhood of $(0,0)$, say in $[-2,2] \times[2,2]$. We can see that the plot of this functions has two "wings" that spring in two different directions in the neighbourhood of $(0,0)$.

Example 2. Show that a limit $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+y^{2}}$ does not exist.
Solution: We will find two sequences that both tend to $(0,0)$, but for which function $f(x, y)=$ $\frac{x}{x+y}$ approaches different numbers. Let the sequences be $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\frac{1}{n}, \frac{3}{n}\right)$ and $\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\left(\frac{1}{n}, \frac{2}{n}\right)$. Now, let us calculate two limits:

- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{2 \cdot \frac{1}{n} \cdot \frac{3}{n}}{\left(\frac{1}{n}\right)^{2}+\left(\frac{3}{n}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{6}{n^{2}}}{\frac{1}{n^{2}}+\frac{9}{n^{2}}}=\frac{6}{1+9}=\frac{6}{10}=\frac{3}{5}$.
- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\lim _{n \rightarrow \infty} \frac{2 \cdot \frac{1}{n} \cdot \frac{2}{n}}{\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{4}{n^{2}}}{\frac{1}{n^{2}}+\frac{4}{n^{2}}}=\frac{4}{1+4}=\frac{4}{5}$.

Again, we obtained two different limits, which implies that a limit does not exist.

Example 3. Show that a limit $\lim _{(x, y) \rightarrow(0,1)} \frac{x^{6}}{y^{3}-1}$ does not exist.
Solution: Let $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\frac{1}{n}, \sqrt[3]{1-\frac{1}{n^{3}}}\right)$ and $\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\left(\frac{1}{\sqrt{n}}, \sqrt[3]{1-\frac{1}{n^{3}}}\right)$.
It is obvious that $\lim _{n \rightarrow \infty} \sqrt[3]{1-\frac{1}{n^{3}}}=1$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}$.

We have the following result:

- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{6}}}{\left(1-\frac{1}{n^{3}}\right)-1}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{6}}}{-\frac{1}{n^{3}}}=$ $=\lim _{n \rightarrow \infty}-\frac{n^{3}}{n^{6}}=0$.
- $\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}}{\left(1-\frac{1}{n^{3}}\right)-1}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}}{-\frac{1}{n^{3}}}=$ $=-1$.

Since $0 \neq-1$, the limit does not exist.

The figure on the right shows the plot of $f(x, y)=\frac{x^{6}}{y^{3}-1}$ for $(x, y) \in[-2,2] \times[-2,2]$.

Example 4. Show that a limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.
Solution: Let $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\frac{1}{n}, \frac{1}{n}\right)$ and $\left(x_{n}^{\prime \prime}, y_{n}^{\prime \prime}\right)=\left(\frac{1}{n}, \frac{2}{n}\right)$. Then, $\lim _{n \rightarrow \infty} \frac{x_{n}^{\prime}}{y_{n}^{\prime \prime}}=1$ and $\lim _{n \rightarrow \infty} \frac{x_{n}^{\prime \prime}}{y_{n}^{\prime \prime}}=\frac{1}{2}$. Thus, the limit does not exist.

Example 5. Show that a limit $\lim _{(x, y) \rightarrow\left(\frac{\pi}{2}, \frac{\pi}{2}\right)} \frac{\cos x}{\cos y}$ does not exist.

Solution: Let us "move" the cosines by $\frac{\pi}{2}$ to obtain the sines (which we are more used to). Since $\cos \left(x+\frac{\pi}{2}\right)=-\sin x$, we now need to show that $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x}{\sin y}$ does not exist. We will also need to use the fact, that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. So:
$\lim _{(x, y) \rightarrow(0,0)} \frac{\sin x}{\sin y}=\lim _{(x, y) \rightarrow(0,0)} \frac{x \cdot \frac{\sin x}{y \cdot \frac{\sin y}{y}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x \cdot 1}{y \cdot 1}=}{}=$ $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$,

and it has already been shown in Example 4 that such a limit does not exist.
The figure shows the plot of $f(x, y)=\frac{\cos x}{\cos y}$ for $(x, y) \in[0, \pi] \times[0, \pi]$.

Example 6. Show that a limit $\lim _{(x, y) \rightarrow(0,0)} \frac{1}{x+y}$ does not exist.

Solution: We need to notice that:

- $\lim _{(x, y) \rightarrow\left(0^{+}, 0^{+}\right)} \frac{1}{x+y}=\left[\frac{1}{+0}\right]=\infty$,
- $\lim _{(x, y) \rightarrow\left(0^{-}, 0^{-}\right)} \frac{1}{x+y}=\left[\frac{1}{-0}\right]=-\infty$.

Therefore, the limit does not exist.

Figure on the right shows the plot of $f(x, y)=\frac{1}{x+y}$.

 not exist.

Solution: The domain of function $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ is $\mathbf{R}^{2} \backslash\{(0,0)\}$. We will approach point $(0,0)$ along two lines: $y=x$ and $y=2 x$:
a) along $y=x$:

$$
\begin{gathered}
f(x, y)=f(x, x)=\frac{x^{2}-x^{2}}{x^{2}+x^{2}}=\frac{0}{2 x^{2}}, \\
\lim _{(x, y) \rightarrow(0,0) \text { along } y=x} f(x, y)=0,
\end{gathered}
$$

b) along $y=2 x$:

$$
\begin{gathered}
f(x, y)=f(x, 2 x)=\frac{x^{2}-4 x^{2}}{x^{2}+4 x^{2}}=\frac{-3 x^{2}}{5 x^{2}}=-\frac{3}{5}, \\
\lim _{(x, y) \rightarrow(0,0) \text { along } y=2 x} f(x, y)=-\frac{3}{5} .
\end{gathered}
$$

Limits presented in poiunts (a) and (b) are different, therefore $f(x, y)$ has no limit as (x, y) tends to $(0,0)$.

