Minima, Maxima and Saddle Points

For a function $f(x, y)$ of two independent variables, we look for points where the surface $z=$ $f(x, y)$ has a horizontal tangent plane. At such points we then look for a local maximum, a local minimum, or a local saddle point.

We organize the search for the local extreme values assumed by a continuous function $f(x, y)$ into two steps:

- The local maxima and minima of f can occur only at points where

$$
\frac{\partial f}{\partial x}=0 \quad \wedge \quad \frac{\partial f}{\partial y}=0
$$

and points where $\frac{\partial f}{\partial x}$ or $\frac{\partial f}{\partial y}$ fail to exist. We call these the critical points of f.

- If f and its first and second partial derivatives are continuous, there is the second derivative test that may identify the behavior of f at critical point (a, b). The expression

$$
D=\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right|
$$

is called the discriminant of f and the test goes like this:
If $\frac{\partial f}{\partial x}(a, b)=\frac{\partial f}{\partial y}(a, b)=0$, then
i) if $D(a, b)>0$ and $\frac{\partial^{2} f}{\partial x^{2}}(a, b)<0$, then f has a local maximum at (a, b)
ii) if $D(a, b)>0$ and $\frac{\partial^{2} f}{\partial x^{2}}(a, b)>0$, then f has a local minimum at (a, b)
iii) if $D(a, b)<0$, then f has a local saddle point at (a, b)
iv) if $D(a, b)=0$, then the test is inconclusive at (a, b) - we must find some other way to determine the behavior of f at (a, b).

Maximum-Minimum Theorem for two variables

Let R be a bounded set in the plane that contains its boundary, and let f be a continuous on R. Then f has both a maximum and minimum value on R.

We organize the search for the absolute maximum and minimum values into three steps:

- 1. Find the critical points of f in R, and compute the values of f at this points.
- 2. Find the extreme values of f on the boundary of R.
- 3. The maximum value of f on R will be a largest of the values computed in steps 1 . and 2., and the minimum value of f on R will be the smallest of those values.

Example 1. Find local extremes of $f(x, y)=\left(2 x+y^{2}\right) e^{x}$.
Solution: Let us first calculate the first and second order derivatives:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 e^{x}+\left(2 x+y^{2}\right) e^{x}=e^{x}\left(2+2 x+y^{2}\right), \quad \frac{\partial f}{\partial y}=2 y e^{x} \\
\frac{\partial^{2} f}{\partial x^{2}}=2 e^{x}+\left(2 x+y^{2}+2\right) e^{x}=e^{x}\left(4+2 x+y^{2}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=2 y e^{x}, \quad \frac{\partial^{2} f}{\partial y^{2}}=2 e^{x} .
\end{gathered}
$$

Function f may have extremes only at points, for which $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$, that is:

$$
\frac{\partial f}{\partial x}=e^{x}\left(2+2 x+y^{2}\right)=0, \quad \frac{\partial f}{\partial y}=2 y e^{x}=0
$$

Since $e^{x} \neq 0$ for every $x, 2 y e^{x}=0$ only when $y=0$. That means:

$$
e^{x}\left(2+2 x+y^{2}\right)=\left.0 \Leftrightarrow\left(2+2 x+y^{2}\right)\right|_{y=0}=0 \Leftrightarrow 2+2 x=0 \Leftrightarrow x=-1 .
$$

Function f may have an extreme at $P=(-1,0)$, so let us calculate the appropriate determinant to make sure:

$$
\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(-1,0) & \frac{\partial^{2} f}{\partial x \partial y}(-1,0) \\
\frac{\partial^{2} f}{\partial y \partial x}(-1,0) & \frac{\partial^{2} f}{\partial y^{2}}(-1,0)
\end{array}\right|=\left|\begin{array}{cc}
2 e^{-1} & 0 \\
0 & 2 e^{-1}
\end{array}\right|=4 e^{-2}=\frac{4}{e^{2}}>0
$$

The value of the determinant is positive, therefore f definitely has an extreme at $P=(-1,0)$. Let us check the value of $\frac{\partial^{2} f}{\partial x^{2}}(-1,0)$ to check if it's a minimum or a maximum:

$$
\frac{\partial^{2} f}{\partial x^{2}}(-1,0)=2 e^{-1}=\frac{2}{e}>0
$$

therefore it is a minimum.

Example 2. Find local extremes of $f(x, y)=x \sqrt{y+1}+y \sqrt{x+1}$.
Solution: Let us calculate the first order derivatives:

$$
\frac{\partial f}{\partial x}=\sqrt{y+1}+\frac{y}{2 \sqrt{x+1}}, \quad \frac{\partial f}{\partial y}=\frac{x}{2 \sqrt{y+1}}+\sqrt{x+1}
$$

Function f may have an extreme at point $P=(x, y)$ if and only if $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$:

$$
\left\{\begin{array} { l }
{ \frac { \partial f } { \partial x } = 0 } \\
{ \frac { \partial f } { \partial y } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { c }
{ \sqrt { y + 1 } + \frac { y } { 2 \sqrt { x + 1 } } = 0 } \\
{ \frac { x } { 2 \sqrt { y + 1 } } + \sqrt { x + 1 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=-\frac{2}{3} \\
y=-\frac{2}{3}
\end{array}\right.\right.\right.
$$

Function f may have an extreme only at $P=\left(-\frac{2}{3},-\frac{2}{3}\right)$. Let us check the determinant:

$$
\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(-\frac{2}{3},-\frac{2}{3}\right) & \frac{\partial^{2} f}{\partial x^{2} y}\left(-\frac{2}{3},-\frac{2}{3}\right) \\
\frac{\partial^{2} f}{\partial y \partial x}\left(-\frac{2}{3},-\frac{2}{3}\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(-\frac{2}{3},-\frac{2}{3}\right)
\end{array}\right|=\left|\begin{array}{cc}
\frac{\sqrt{3}}{2} & \sqrt{3} \\
\sqrt{3} & \frac{\sqrt{3}}{2}
\end{array}\right|=\frac{3}{2}-9<0 .
$$

Therefore f does not have an extreme at $P=\left(-\frac{2}{3},-\frac{2}{3}\right)$ - it has a saddle point.

Example 1

$$
\begin{gathered}
f(x, y)=\left(2 x+y^{2}\right) e^{x} \\
(x, y) \in[-2,0] \times[-1,1]
\end{gathered}
$$

Example 2

$$
\begin{gathered}
f(x, y)=x \sqrt{y+1}+y \sqrt{x+1} \\
(x, y) \in[-1,0] \times[-1,0]
\end{gathered}
$$

