Partial Derivatives - Examples

Let f be a function of two variables. If we fix one of the two variables, say $y=y_{0}$, the function whose values are $f\left(x, y_{0}\right)$ is a function of x alone. If that function has a derivative at x_{0}, we call the derivative a partial derivative at $\left(x_{0}, y_{0}\right)$.

Partial derivatives of f are frequently denoted

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}
$$

and

$$
f_{x}, \quad f_{y}
$$

Definition

Let f be a function of two variables and let $\left(x_{0}, y_{0}\right)$ be in domain of f.
The partial derivative of f with respect to x at $\left(x_{0}, y_{0}\right)$ is defined by

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x}
$$

provided that this limit exists.
The partial derivative of f with respect to y at $\left(x_{0}, y_{0}\right)$ is defined by

$$
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y}
$$

provided that this limit exists.

Example 1. Using the definition, calculate first order partial derivatives of $f(x, y)=x \sin (x y)$ at $\left(x_{0}, y_{0}\right)=(\pi, 1)$.

Solution:

$$
\begin{aligned}
& \begin{aligned}
\frac{\partial f}{\partial x}(\pi, 1) \stackrel{\text { def }}{=} & \lim _{\Delta x \rightarrow 0} \frac{f(\pi+\Delta x, 1)-f(\pi, 1)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(\pi+\Delta x) \sin (\pi+\Delta x)-\pi \sin \pi}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0}(\pi+\Delta x) \frac{-\sin \Delta x}{\Delta x}=\pi \cdot(-1)=-\pi
\end{aligned} \\
& \frac{\partial f}{\partial y}(\pi, 1) \stackrel{\text { def }}{=} \lim _{\Delta y \rightarrow 0} \frac{f(\pi, 1+\Delta y)-f(\pi, 1)}{\Delta y} \\
& = \\
& \lim _{\Delta y \rightarrow 0} \frac{\pi \sin (\pi(1+\Delta y))-\pi \sin \pi}{\Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{-\pi \sin (\pi \Delta y)}{\Delta y}=-\pi^{2} \lim _{\Delta y \rightarrow 0} \frac{\sin (\pi \Delta y)}{\pi \Delta y}=-\pi^{2} \cdot 1=-\pi^{2} .
\end{aligned}
$$

Example 2. Using derivation formulas, calculate first order partial derivatives of $f(x, y)=x^{2}+x y^{2}+y^{3}$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+x y^{2}+y^{3}\right)=2 x+y^{2}+0=2 x+y^{2} \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+x y^{2}+y^{3}\right)=0+x \cdot 2 y+3 y^{2}=2 x y+3 y^{2} .
\end{aligned}
$$

Example 3. Using derivation formulas, calculate first order partial derivatives of $f(x, y)=e^{x^{2} \sin y}$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(e^{x^{2} \sin y}\right)=e^{x^{2} \sin y} \cdot 2 x \sin y \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(e^{x^{2} \sin y}\right)=e^{x^{2} \sin y} \cdot x^{2} \cos y
\end{aligned}
$$

Example 4. Using derivation formulas, calculate first order partial derivatives of $f(x, y, z)=x^{y}+y^{z}$.

Solution:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{y}+y^{z}\right)=y x^{y-1} \\
& \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{y}+y^{z}\right)=x^{y} \ln x+z y^{z-1} \\
& \frac{\partial f}{\partial z}=\frac{\partial}{\partial z}\left(x^{y}+y^{z}\right)=y^{z} \ln z
\end{aligned}
$$

Second partial derivatives are defined to be partial derivatives of first partial derivatives, and higher derivatives are similarly defined. If both of the first order partial derivatives exist in a neighborhood $\left(x_{0}, y_{0}\right)$ and they are functions of x and y, then we can differentiate each with respect to x or y :

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)\right), \frac{\partial^{2} f}{\partial x \partial y}=\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)\right), \\
& \frac{\partial^{2} f}{\partial y \partial x}=\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)\right), \frac{\partial^{2} f}{\partial y^{2}}=\left(\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)\right) .
\end{aligned}
$$

Partial derivatives involving more than one variable are called mixed partial derivatives.

Notation

Pure second partial derivatives: $f_{x x} \equiv \frac{\partial^{2} f}{\partial x^{2}}, f_{y y} \equiv \frac{\partial^{2} f}{\partial y^{2}}$.
Mixed partial derivatives: $f_{x y} \equiv \frac{\partial^{2} f}{\partial x \partial y}, f_{y x} \equiv \frac{\partial^{2} f}{\partial y \partial x}$.

Example 5. Calculate all second order partial derivatives of $f(x, y)=x y+\frac{x^{2}}{y^{3}}$.
Solution: Firstly, we need to calculate first order partial derivatives:

$$
\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x y+\frac{x^{2}}{y^{3}}\right)=y+\frac{2 x}{y^{3}}, \quad \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x y+\frac{x^{2}}{y^{3}}\right)=x-\frac{3 x^{2}}{y^{4}} .
$$

Now, we are ready to calculate second order partial derivatives:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(y+\frac{2 x}{y^{3}}\right)=0+\frac{2}{y^{3}}=\frac{2}{y^{3}}, \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(x-\frac{3 x^{2}}{y^{4}}\right)=1-\frac{6 x}{y^{4}}, \\
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(y+\frac{2 x}{y^{3}}\right)=1-\frac{6 x}{y^{4}}, \\
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(x-\frac{3 x^{2}}{y^{4}}\right)=0+\frac{12 x^{2}}{y^{5}}=\frac{12 x^{2}}{y^{5}} .
\end{aligned}
$$

Example 6. Calculate $\frac{\partial^{5}}{\partial x \partial y^{4}}\left(x e^{-y}\right)$.

Solution:

$$
\begin{aligned}
\frac{\partial^{5}}{\partial x \partial y^{4}}\left(x e^{-y}\right) & =\frac{\partial^{4}}{\partial x \partial y^{3}}\left(\frac{\partial}{\partial y}\left(x e^{-y}\right)\right)=\frac{\partial^{4}}{\partial x \partial y^{3}}\left(-x e^{-y}\right) \\
& =\frac{\partial^{3}}{\partial x \partial y^{2}}\left(\frac{\partial}{\partial y}\left(-x e^{-y}\right)\right)=\frac{\partial^{3}}{\partial x \partial y^{2}}\left(x e^{-y}\right) \\
& =\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial}{\partial y}\left(x e^{-y}\right)\right)=\frac{\partial^{2}}{\partial x \partial y}\left(-x e^{-y}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\left(-x e^{-y}\right)\right)=\frac{\partial}{\partial x}\left(x e^{-y}\right)=e^{-y} .
\end{aligned}
$$

Example 7. Check if function $u(x, y, z)=\ln \left(x^{2}+y^{2}+z^{2}\right)$ satisfies the equation $\frac{\partial^{2} u}{\partial x \partial z}=\frac{\partial^{2} u}{\partial z \partial x}$.

Solution:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial z}\left(\ln \left(x^{2}+y^{2}+z^{2}\right)\right)\right)=\frac{\partial}{\partial x}\left(\frac{2 z}{x^{2}+y^{2}+z^{2}}\right)=\frac{-4 x z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
\frac{\partial^{2} u}{\partial z \partial x} & =\frac{\partial}{\partial z}\left(\frac{\partial}{\partial x}\left(\ln \left(x^{2}+y^{2}+z^{2}\right)\right)\right)=\frac{\partial}{\partial z}\left(\frac{2 x}{x^{2}+y^{2}+z^{2}}\right)=\frac{-4 z x}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
\end{aligned}
$$

Yes, function u satisfies the given equation.

Applications - Tangent plane

The graph of a function $f(x, y)$ is a surface in \mathbf{R}^{3} (three dimensional space) and so we can now start thinking of the plane that is "tangent" to the surface at the point.
If $f(x, y)$ and its partial derivatives are all continuous at $\left(x_{0}, y_{0}\right)$, then we define the tangent plane of the surface at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$:

$$
z-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Example 8. Write down the equation of a plane tangent to the graph of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ at $P=(\sqrt{2},-\sqrt{3}, 2)$.

Solution: Firstly, we need to calculate partial derivatives at $P_{x y}=(\sqrt{2},-\sqrt{3})$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(\sqrt{2},-\sqrt{3})=\left.\frac{\partial}{\partial x}\left(\sqrt{9-x^{2}-y^{2}}\right)\right|_{(\sqrt{2},-\sqrt{3})}=\left.\frac{-2 x}{2 \sqrt{9-x^{2}-y^{2}}}\right|_{(\sqrt{2},-\sqrt{3})}=-\frac{\sqrt{2}}{2}, \\
& \frac{\partial f}{\partial y}(\sqrt{2},-\sqrt{3})=\left.\frac{\partial}{\partial y}\left(\sqrt{9-x^{2}-y^{2}}\right)\right|_{(\sqrt{2},-\sqrt{3})}=\left.\frac{-2 y}{2 \sqrt{9-x^{2}-y^{2}}}\right|_{(\sqrt{2},-\sqrt{3})}=\frac{\sqrt{3}}{2} .
\end{aligned}
$$

The equation of a tangent plane is equal to

$$
z-2=-\frac{\sqrt{2}}{2}(x-\sqrt{2})+\frac{\sqrt{3}}{2}(y+\sqrt{3})
$$

which may be simplified to

$$
\sqrt{2} x-\sqrt{3} y+2 x-9=0
$$

Total differential

If f is function of two variables, which is differentiable at (x, y) (in the domain of f), then

$$
f(x+h, y+h)=f(x, y)+\frac{\partial f}{\partial x}(x, y) h+\frac{\partial f}{\partial y}(x, y) k
$$

The number

$$
\frac{\partial f}{\partial x}(x, y) h+\frac{\partial f}{\partial y}(x, y) k
$$

is called the differential (or total differential) of f at (x, y) (with increments h and k) and is denoted

$$
d f .
$$

Thus $d f$ depends on x, y, h and k. We can write this formula as

$$
d y=\frac{\partial f}{\partial x}(x, y) d x+\frac{\partial f}{\partial y}(x, y) d y
$$

Example 9. Using the differential of a function calculate the approximated value of $\frac{\arctan 0.9}{\sqrt{4.02}}$. Solution: We are going to use the following formula:

$$
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \approx f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y
$$

Let us assume:

$$
f(x, y)=\frac{\arctan x}{\sqrt{y}},\left(x_{0}, y_{0}\right)=(1,4), \Delta x=-0.1, \Delta y=0.02 .
$$

Then, we have:

$$
f(1,4)=0,125 \pi, \frac{\partial f}{\partial x}=\frac{1}{\left(1+x^{2}\right) \sqrt{y}}, \frac{\partial f}{\partial y}=\frac{\arctan x}{-2 y \sqrt{y}} .
$$

furthermore, $\frac{\partial f}{\partial x}(1,4)=0.25$ and $\frac{\partial f}{\partial y}(1,4)=-0.015625 \pi$. So:
$\frac{\arctan 0.9}{\sqrt{4.02}}=f(0.9,4.02) \approx 0.125 \pi+0.25 \cdot(-0.1)-0.015625 \pi \cdot 0.02=0.1246875 \pi-0.125 \approx 0.366717$.

