## POLAR COORDINATES

The <u>polar coordinate system</u> is a two-dimensional coordinate system in which each point on a plane is determined by a <u>distance from a fixed point</u> and an angle from a fixed direction.

The polar coordinates of point P are

$$P = (r\cos\theta, r\sin\theta)$$



## Applications

Polar coordinates may be used to show, that a limit (with  $(x, y) \rightarrow (0, 0)$ ) exists or does not exist. The basic way to do that is:

- 1. Substitute polar coordinates for x and y.
- 2. Simplify the resulting expression remember that if  $(x, y) \to (0, 0)$ , then  $r \to 0$  and  $\theta$  is arbitrary.
- 3. Remember, that the following limits do not exist:  $\lim_{r \to \dots} \sin\theta$ ,  $\lim_{r \to \dots} \cos\theta$ ,  $\lim_{r \to \dots} \tan\theta$ ,  $\lim_{r \to \dots} \cot\theta$ – because they depend only on  $\theta$ !

**Example 1.** Show that  $\lim_{(x,y)\to(0,0)} \frac{x}{y}$  does not exist. **Solution:**  $\lim_{(x,y)\to(0,0)} = \lim_{r\to 0} \frac{r\cos\theta}{r\sin\theta} = \lim_{r\to 0} \cot\theta - \text{this limit does not exist, because } \cot\theta$ may take on different values.

**Example 2.** Show that  $\lim_{(x,y)\to(0,0)} \frac{3yx}{x^2+y^2}$  does not exist. **Solution:**  $\lim_{(x,y)\to(0,0)} \frac{3yx}{x^2+y^2} = \lim_{r\to 0} \frac{3r^2\sin\theta\cos\theta}{r^2(\cos^2\theta+\sin^2\theta)} = \lim_{r\to 0} \frac{3\sin\theta\cos\theta}{1} = \lim_{r\to 0} \frac{3}{2}\sin 2\theta$  – again, this limit depends only on  $\theta$ , so it does not exist.

 $\begin{array}{l} \underline{\textbf{Example 3.}} \text{ Calculate } \lim_{\substack{(x,y) \to (0,0)}} \frac{x^2 y^2}{x^2 + y^2}. \\ \underline{\textbf{Solution:}} \lim_{\substack{(x,y) \to (0,0)}} \frac{x^2 y^2}{x^2 + y^2} = \lim_{r \to 0} \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2 (\cos^2 \theta + \sin^2 \theta)} = \lim_{r \to 0} r^2 \cos^2 \theta \sin^2 \theta. \\ \text{We know that } \cos^2 \theta \sin^2 \theta \in [0, 1], \text{ so finally } \lim_{r \to 0} r^2 \cos^2 \theta \sin^2 \theta = 0. \end{array}$