Polar coordinates

The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a fixed point and an angle from a fixed direction.

The polar coordinates of point P are

$$
P=(r \cos \theta, r \sin \theta)
$$

Applications

Polar coordinates may be used to show, that a limit (with $(x, y) \rightarrow(0,0)$) exists or does not exist. The basic way to do that is:

1. Substitute polar coordinates for x and y.
2. Simplify the resulting expression - remember that if $(x, y) \rightarrow(0,0)$, then $r \rightarrow 0$ and θ is arbitrary.
3. Remember, that the following limits do not exist: $\lim _{r \rightarrow \ldots} \sin \theta, \lim _{r \rightarrow \ldots} \cos \theta, \lim _{r \rightarrow \ldots} \tan \theta, \lim _{r \rightarrow \ldots} \cot \theta$ - because they depend only on θ !

Example 1. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x}{y}$ does not exist.
Solution: $\lim _{(x, y) \rightarrow(0,0)}=\lim _{r \rightarrow 0} \frac{r \cos \theta}{r \sin \theta}=\lim _{r \rightarrow 0} \frac{\cos \theta}{\sin \theta}=\lim _{r \rightarrow 0} \cot \theta$ - this limit does not exist, because $\cot \theta$ may take on different values.

Example 2. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 y x}{x^{2}+y^{2}}$ does not exist.
Solution: $\lim _{(x, y) \rightarrow(0,0)} \frac{3 y x}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{3 r^{2} \sin \theta \cos \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\lim _{r \rightarrow 0} \frac{3 \sin \theta \cos \theta}{1}=\lim _{r \rightarrow 0} \frac{3}{2} \sin 2 \theta-$ again, this limit depends only on θ, so it does not exist.

Example 3. Calculate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$.
Solution: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{r^{4} \cos ^{2} \theta \sin ^{2} \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\lim _{r \rightarrow 0} r^{2} \cos ^{2} \theta \sin ^{2} \theta$.
We know that $\cos ^{2} \theta \sin ^{2} \theta \in[0,1]$, so finally $\lim _{r \rightarrow 0} r^{2} \cos ^{2} \theta \sin ^{2} \theta=0$.

