1 Exponential function and its properties

The power function was defined earlier as $f(x)=x^{a}$, where a was a given real number, and x was the variable. If we interchange these two letters, we will have a power a^{x} with a fixed base and variable exponent. Such a function is called an exponential function.

Def. 1.1 The exponential function f with base a is defined by

$$
f(x)=a^{x}
$$

where a is a real number such that $a>0, a \neq 1$ and x is any real number.

Your first question, as always, should be: why the assumptions on base a ? Here is why:

- $a=1$ is excluded because it yields $f(x)=1^{x}=1$, which is a constant linear function.
- Similarly, $a=0$ leads to $f(x)=0^{x}$, which equals 0 for all $x>0$.
- $a>0$, because for example when $a=-1, a^{x}$ doesn't exist for every x

$$
f\left(\frac{1}{3}\right)=\sqrt[3]{-1}=-1, \quad f\left(\frac{1}{2}\right)=\sqrt{-1} \notin \mathbb{R}
$$

If we have a function, then we can draw its graph. And we can read most of the properties of a function from its graph. Exponential functions come in two varieties,

- if the base a is larger than 1 , e.g. 4^{x} then the values will grow with increasing exponent x,
- if the base a is smaller than 1, e.g. $\left(\frac{1}{4}\right)^{x}=4^{-x}$ then the values will decline as the exponent x increases.

- Exponential equations

$$
\text { one-to-one property: } a^{x}=a^{y} \quad \Leftrightarrow \quad x=y
$$

The one-to-one property is used when solving exponential equations.

Example 1.1 To explain the idea of using one-to-one property, let's solve this simple equation

$$
\left(\frac{1}{27}\right)^{4 x}=81
$$

As always, start with determining restrictions on the variable x. Here there are none, so $x \in \mathbb{R}$. To solve the equation, first we try to express both sides of the equation as powers with the same base

$$
\begin{gathered}
\left(3^{-3}\right)^{4 x}=3^{4} \\
3^{-12 x}=3^{4}
\end{gathered}
$$

and then, by the one-to-one property, we may drop the common base

$$
-12 x=4 \quad \Longleftrightarrow \quad x=-\frac{1}{3}
$$

$$
\checkmark \checkmark \checkmark \checkmark-
$$

Example 1.2 The same approach is the first thing we try with more complicated equations as well.

$$
7 \cdot 4^{x}-26=2^{2 x+1}+7 \cdot 4^{x-1}
$$

There are no restrictions on x, so $x \in \mathbb{R}$. We simplify the equation,

$$
\begin{gathered}
7 \cdot 4^{x}-26=2^{2 x} \cdot 2^{1}+7 \cdot 4^{x} \cdot 4^{-1} \\
7 \cdot 4^{x}-2 \cdot 4^{x}-\frac{7}{4} \cdot 4^{x}=26 \\
\frac{13}{4} \cdot 4^{x}=26 \\
4^{x}=8 \\
2^{2 x}=2^{3} \quad \Longleftrightarrow \quad 2 x=3 \quad \Longleftrightarrow \quad x=\frac{3}{2}
\end{gathered}
$$

Example 1.3 It is, of course, not always possible to express the entire expression as one power. In such cases we may try to use substitution.

$$
3^{2 x}-8 \cdot 3^{x}-9=0
$$

As before, $x \in \mathbb{R}$. By using the substitution $3^{x}=t>0$, we change the exponential equation into a quadratic one

$$
\begin{gathered}
t^{2}-8 t-9=0 \\
(t+1)(t-9)=0
\end{gathered}
$$

This equation has two solutions, but only the positive one is valid

$$
t=-1<0, \quad \vee \quad t=9
$$

Now, we reverse the substitution

$$
\begin{aligned}
& 3^{x}=9 \\
& 3^{x}=3^{2} \quad \Longrightarrow \quad x=2
\end{aligned}
$$

Example 1.4 Here is one example with some initial restrictions on x.

$$
\frac{1}{8} \cdot 4^{\sqrt{x}}=8^{x-1}
$$

We start with noting that there is a restriction on x due to the square root, that is: $x \geq 0$. Then, we simplify

$$
\begin{aligned}
2^{-3} \cdot 2^{2 \sqrt{x}} & =2^{3(x-1)} \\
2^{-3+2 \sqrt{x}} & =2^{3 x-3}
\end{aligned}
$$

and by the one-to-one property, we may drop the common base

$$
\begin{gathered}
-3+2 \sqrt{x}=3 x-3 \\
2 \sqrt{x}=3 x
\end{gathered}
$$

We may square both sides of this equation since they are both nonnegative $(x \geq 0)$

$$
\begin{gathered}
4 x=9 x^{2} \\
x(9 x-4)=0 \quad \Longrightarrow \quad x=0 \vee x=\frac{4}{9} \\
\end{gathered}
$$

- Exponential inequalities

When solving inequalities with an exponential function we most often use the monotonicity property.

\[

\]

To illustrate the idea we'll start with a similar example we used to explain how to solve equations.

Example 1.5

$$
\left(\frac{1}{27}\right)^{4 x} \geq 81
$$

From this, just as with the equation, we get

$$
3^{-12 x} \geq 3^{4}
$$

Since the exponential function with base 3 is an increasing function, we drop the base without changing the direction of the inequality

$$
-12 x \geq 4 \Longrightarrow x \leq-\frac{1}{3}
$$

Notice that we could have simplified the original inequality to

$$
\left(\frac{1}{3}\right)^{12 x} \geq\left(\frac{1}{3}\right)^{-4}
$$

And here, since the exponential function with base $\frac{1}{3}$ is a decreasing function, when dropping the base we'd have to change the direction of the inequality

$$
12 x \leq-4
$$

which, of course, leads to the same solution.

Example 1.6 Substitution is useful in cases where we're unable to simplify the entire expression into one power

$$
16^{x}-8<-2^{2 x+1}
$$

There are no restrictions on x, so $x \in \mathbb{R}$.

$$
4^{2 x}+2 \cdot 4^{x}-8<0
$$

We make the substitution $4^{x}=t>0$, and change the exponential inequality into a quadratic one,

$$
\begin{gathered}
t^{2}+2 t-8<0 \\
(t-2)(t+4)<0 \\
-4<t<2 \wedge t>0 \Longrightarrow 0<t \leq 2
\end{gathered}
$$

Now, we reverse the substitution

$$
\begin{gathered}
0<4^{x} \leq 2 \\
2^{2 x} \leq 2 \Longrightarrow \quad 2 x<1 \Longrightarrow \quad \begin{array}{l}
x \leq \frac{1}{2} \\
\end{array}
\end{gathered}
$$

Example 1.7 Here is an example that at first looks complicated

$$
7+4^{\frac{2 \sqrt{x-1}-1}{2}}>4^{\sqrt{x-1}+1}
$$

Start with restrictions on x.

$$
x-1 \geq 0 \quad \Longrightarrow \quad x \geq 1
$$

Then simplify the inequality,

$$
\begin{gathered}
7>4 \cdot 4^{\sqrt{x-1}}-4^{-\frac{1}{2}} \cdot 4^{\sqrt{x-1}} \\
7>\frac{7}{2} \cdot 4^{\sqrt{x-1}} \\
2>2^{2 \sqrt{x-1}} \\
1>2 \sqrt{x-1}
\end{gathered}
$$

Since both sides of the inequality are positive, we may square it

$$
1>4(x-1) \quad \Longrightarrow \quad x<\frac{5}{4} \quad \wedge \quad x \geq 1 \quad \Longrightarrow \quad 1 \leq x<\frac{5}{4}
$$

\qquad

References

[1] Matematyka - podstawy z elementami matematyki wyszej, edited by B. Wikieł, PG publishing house, 2009.

