1 Functions. Definition and graphs

Def. 1.1 Given two nonempty sets $X, Y \subset \mathbb{R}$, a function f is a rule that assigns to each value $x \in X$ a unique value $y=f(x) \in Y$. We write,

$$
f: X \longrightarrow Y, \quad y=f(x) \text { for } x \in X
$$

- $X=D_{f}$ is called the domain of the function
- Natural domain is the set of those $x \in \mathbb{R}$, for which the formula of the function makes sense.
- The set of possible values of the function is called the range, $R_{f}=\{y \in Y: y=f(x), x \in X\} \subset Y$
- The argument of the function is the expression on which the function works. For example, z is the argument in $f(z), 5$ is the argument in $f(5), x^{2}-6$ is the argument in $f\left(x^{2}-6\right)$.
- The independent variable is the variable associated with the domain (x in the definition above), and the dependent variable belongs to the range (y in the definition above).

Example 1.1 Find the domain of each function.

- $f(x)=\sqrt{9-x^{2}}$

We cannot have a negative argument under the square root, so

$$
\begin{gathered}
9-x^{2} \geq 0 \quad \Leftrightarrow \quad(3-x)(3+x) \geq 0 \\
D_{f}=\langle-3,3\rangle
\end{gathered}
$$

- $g(x)=\frac{x+1}{x^{2}-1}$

The formula doesn't make sense if the denominator is zero, so

$$
\begin{gathered}
x^{2}-1 \neq 0 \quad \Leftrightarrow \quad x \neq \pm 1 \\
D_{g}=\mathbb{R} \backslash\{-1,1\}
\end{gathered}
$$

- $h(x)=\frac{3-x}{\sqrt{x^{2}-4}}$

This expression makes sense if the denominator is nonzero and the expression under the square root is nonnegative, so together we have

$$
\begin{gathered}
x^{2}-4>0 \\
D_{h}=\{x \in \mathbb{R}: x<-2 \vee x>2\}=(-\infty,-2) \cup(2, \infty)
\end{gathered}
$$

Def. 1.2 The graph of the function f is the set of all points (x, y) in the $x y$-plane (Cartesian plane) that satisfy the equation $f(x)=y$ for $x \in X$,

$$
\left\{(x, y) \in \mathbb{R}^{2}: x \in X, y=f(x)\right\}
$$

- The domain D_{f} is the projection of the graph onto the x-axis (the primary axis)
- The range R_{f} is the projection of the graph onto the y-axis (the secondary axis)

Example 1.2

The requirement that a function must assign a unique value of the dependent variable to each value in the domain is expressed in the vertical line test.

Vertical line test.
A graph represents a function if and only if every vertical line $x=x_{0}$ intersects the graph at most once.

Def. 1.3 The zero (root) of the function f is an argument x_{0} such that $f\left(x_{0}\right)=0$. It is the point of intersection of the graph and the x-axis.

Example 1.3 Let's find the zeros of the functions given in the previous example.

- $f(x)=x^{2}+1$

This function has no roots (as you can see on the graph), since $x^{2}+1=0$ has no solution.

- $f(x)=\sqrt{9-x^{2}}$

$$
\sqrt{9-x^{2}}=0 \quad \Leftrightarrow \quad 9-x^{2}=0 \quad \Leftrightarrow \quad x= \pm 3
$$

This function has two zeros, $x=3 \vee x=-3$.

- $f(x)=\frac{1}{x-2}+1$

To determine the zeros of the function we equate it to zero,

$$
\frac{1}{x-2}+1=0 \quad \Leftrightarrow \quad \frac{1}{x-2}=-1 \quad \Leftrightarrow \quad x-2=-1 \quad \Leftrightarrow \quad x=1
$$

2 Operations on functions

In order to discuss operations on functions we must first understand what it means that two functions are equal.
Def. 2.1 Two functions $f: D_{f} \rightarrow Y_{f}$ and $g: D_{g} \rightarrow Y_{g}$ are equal, which we denote by $f=g$, if and only if their domains are identical and their values are the same for all x in the domain,

$$
D_{f}=D_{g} \quad \wedge \quad \forall_{x \in D_{f}} f(x)=g(x)
$$

Example 2.1 Determine whether the given functions are equal.

- $f(x)=x, \quad g(x)=\sqrt{x^{2}}$. Start with the domains,

$$
D_{f}=\mathbb{R}, \quad D_{g}=\mathbb{R}
$$

Domains are equal, but since $\sqrt{x^{2}}=|x|$ the functions will not have the same values for all $x \in D_{f}$, e.g.

$$
f(-2)=-2 \neq g(-2)=\sqrt{(-2)^{2}}=2
$$

So, the functions are not equal.

- $f(x)=\sqrt{x-1} \sqrt{x-2}, \quad g(x)=\sqrt{(x-1)(x-2)}$. First we find the domains,

$$
\begin{gathered}
D_{f}:\left\{\begin{array}{l}
x-1 \geq 0 \\
x-2 \geq 0
\end{array} \quad \Rightarrow \quad x \geq 2\right. \\
D_{g}:(x-1)(x-2) \geq 0 \quad \Rightarrow \quad x \in(-\infty, 1\rangle \cup\langle 2, \infty)
\end{gathered}
$$

Since clearly $D_{f} \neq D_{g}$, the two functions are not equal. Notice, however, that if we restrict the domain of g to the set $D=\langle 2, \infty)$, then the two functions will be equal, since $\sqrt{x-1} \sqrt{x-2}=\sqrt{(x-1)(x-2)}$.

- $f(x)=\frac{1}{x+2}, \quad g(x)=\frac{x-2}{x^{2}-4}$. The domains of the functions are

$$
D_{f}=\mathbb{R} \backslash\{-2\}, \quad D_{g}=\mathbb{R} \backslash\{-2.2\}
$$

So the functions are not equal. Notice that

$$
\frac{x-2}{x^{2}-4}=\frac{x-2}{(x-2)(x+2)}=\frac{1}{x+2}
$$

so the functions have the same values except for at $x=-2$. Thus, if we consider the functions on the set $D=D_{g}=\mathbb{R} \backslash\{-2,2\}$ then the functions will be equal.

Def. 2.2 If f and g are functions with domains D_{f} and D_{g}, respectively, we define

- the sum of f and g

$$
(f+g)(x)=f(x)+g(x), \quad D_{f+g}=D_{f} \cap D_{g}
$$

- the difference of f and g

$$
(f-g)(x)=f(x)-g(x), \quad D_{f-g}=D_{f} \cap D_{g}
$$

- the product of f and g

$$
(f \cdot g)(x)=f(x) \cdot g(x), \quad D_{f \cdot g}=D_{f} \cap D_{g}
$$

- the quotient of f and g

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad D_{f / g}=\left\{x \in \mathbb{R}: x \in D_{f} \cap D_{g} \wedge g(x) \neq 0\right\}
$$

Example 2.2 Let $f(x)=x+\sqrt{x-2}$ and $g(x)=1-x$. Their domains are $D_{f}=\langle 2, \infty)$ and $D_{g}=\mathbb{R}$, and the sum of these functions is

$$
(f+g)(x)=x+\sqrt{x-2}+1-x=1+\sqrt{x-2}
$$

The domain of the sum is

$$
\begin{gathered}
D_{f+g}: x \geq 2 \wedge x \in \mathbb{R} \\
D_{f+g}=\langle 2, \infty) \\
\checkmark \checkmark \checkmark-
\end{gathered}
$$

Example 2.3 Let $f(x)=\sqrt{4 x}$ and $g(x)=\sqrt{x}$.
The domains of both functions are the same, i.e. $D_{f}=D_{g}=\langle 0, \infty)$.

- The product of the functions is

$$
(f \cdot g)(x)=(\sqrt{4 x}) \cdot(\sqrt{x})=2 x
$$

Even though the natural domain of $2 x$ is \mathbb{R}, the domain of the product is the intersection of D_{f} and D_{g}, which in this case is

$$
D_{f \cdot g}=\langle 0, \infty)
$$

- The quotient of the functions is

$$
\left(\frac{f}{g}\right)(x)=\frac{\sqrt{4 x}}{\sqrt{x}}=2
$$

Again, even though the natural domain of the constant function 2 is \mathbb{R}, the domain of the quotient is the intersection of D_{f} and D_{g}, minus the arguments for which $g(x)=0$, that is

$$
D_{f / g}=(0, \infty)
$$

Def. 2.3 Given two functions f and g, the composite function $f \circ g$ (or composition of f and g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Domain of $f \circ g$ consists of all x in the domain of g such that $g(x)$ is in the domain of f.

$$
D_{f \circ g}=\left\{x \in \mathbb{R}: x \in D_{g} \wedge g(x) \in D_{f}\right\}
$$

The function g is called the inner function, and f is called the outer function.

Composition of functions is evaluated in two steps, for the given x we first evaluate the value of the inner function, and then substitute the obtained value for the argument in the outer function. The domain of the composite function is a subset of the domain of the inner function, and the range of the composition is a subset of the range of the outer function.

Example 2.4 Given $f(x)=\frac{1}{x}$ and $g(x)=x-2$, find $f \circ g, g \circ f, f \circ f$ and their domains.

$$
D_{f}=\mathbb{R} \backslash\{0\}, \quad D_{g}=\mathbb{R}
$$

- $(f \circ g)(x)=f(g(x))=f(x-2)=\frac{1}{x-2}$ $D_{f \circ g}=\left\{x \in D_{g} \wedge(x-2) \in D_{f}\right\}=\{x \in \mathbb{R} \wedge x-2 \neq 0\}=\mathbb{R} \backslash\{2\}$
- $(g \circ f)(x)=g(f(x))=g\left(\frac{1}{x}\right)=\frac{1}{x}-2$

$$
D_{g \circ f}=\left\{x \in D_{f} \wedge \frac{1}{x} \in D_{g}\right\}=\mathbb{R} \backslash\{0\}
$$

- $(f \circ f)(x)=f(f(x))=f\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}=x$

$$
D_{f \circ f}=\left\{x \in D_{f} \wedge \frac{1}{x} \in D_{f}\right\}=\left\{x \neq 0 \wedge \frac{1}{x} \neq 0\right\}=\mathbb{R} \backslash\{0\}
$$

3 Graph transformations

There are several ways in which the graph of a function can be transformed to produce graphs of new functions. The common transformations are shifts, scalings, and reflections, which can be done in both x - and y-directions. These transformations are summarized below.

- Vertical shifting

The graph of $y=f(x)+q$ is the graph of $y=f(x)$ shifted vertically by q units (up if $q>0$ and down if $q<0$).

- Horizontal shifting

The graph of $y=f(x-p)$ is the graph of $y=f(x)$ shifted horizontally by p units (right if $p>0$ and left if $p<0)$.

- Vertical scaling

For $c>0$, the graph of $y=c \cdot f(x)$ is the graph of $y=f(x)$ scaled vertically by a factor of c
(squeezed if $0<c<1$ and stretched if $c>1$).

- Horizontal scaling

For $a>0$, the graph of $y=$ $f(a \cdot x)$ is the graph of $y=f(x)$ scaled horizontally by a factor of a (broadened if $0<a<1$ and narrowed if $a>1$).

- Reflections

The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the x-axis.
The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the y-axis.

- Absolute value

The graph of $y=|f(x)|$ is the graph of $y=f(x)$ with the parts below the x-axis reflected about it.
The graph of $y=f(|x|)$ is the graph of $y=f(x)$ with its left-hand side part ignored and its right-hand side reflected about the y-axis.

4 Properties of functions

Def. 4.1

The function $f: X \rightarrow Y$ is called even if for every $x \in X$

$$
f(-x)=f(x) \quad \wedge-x \in X
$$

The function $f: X \rightarrow Y$ is called odd if for every $x \in X$

$$
f(-x)=-f(x) \quad \wedge-x \in X
$$

The graph of an even function is symmetric about the y-axis.

The graph of an odd function is symmetric about the origin.

Example 4.1 An interesting example of an odd function is the signum (sign) function that extracts the sign of a real number.

$$
f(x)=\operatorname{sgn} x= \begin{cases}1 & , x>0 \\ 0 & , x=0 \\ -1 & , x<0\end{cases}
$$

Example 4.2 Determine whether the given function is even, odd, or neither

- $f(x)=\frac{x}{x^{3}+x^{5}}+x^{2}$

As usual the domain goes first,

$$
\begin{gathered}
D_{f}: x^{3}+x^{5} \neq 0 \quad \Leftrightarrow \quad x^{3}\left(1+x^{2}\right) \neq 0 \quad \Leftrightarrow \quad x^{3} \neq 0 \\
D_{f}=\mathbb{R} \backslash\{0\}
\end{gathered}
$$

Then we check the symmetry by definition,

$$
f(-x)=\frac{-x}{(-x)^{3}+(-x)^{5}}+(-x)^{2}=\frac{-x}{-x^{3}-x^{5}}+x^{2}=\frac{x}{x^{3}+x^{5}}+x^{2}=f(x)
$$

So, the function is even.

- $g(x)=\left(x^{2}+1\right) \cdot \operatorname{sgn} x, \quad D_{g}=\mathbb{R}$

Instead of going by definition, let's first show a general fact that

> the product of an even and an odd function is an odd function

Let $p(x)$ be an even function, and let $q(x)$ be an odd function, that is

$$
\begin{gathered}
p(-x)=p(x) \\
q(-x)=-q(x)
\end{gathered}
$$

Let $h(x)=p(x) \cdot q(x)$. Then,

$$
h(-x)=p(-x) \cdot q(-x)=p(x) \cdot(-q(x))=-p(x) \cdot q(x)=-h(x)
$$

Which completes the proof of the fact.
Now back to our problem. The function $g(x)=\left(x^{2}+1\right) \cdot \operatorname{sgn} x \quad$ is a product of an odd $(\operatorname{sgn} x)$ and an even $\left(x^{2}+1\right)$ function. By the above fact we conclude that $g(x)$ is an odd function.

Def. 4.2 A function $f: X \rightarrow Y$ is called strictly increasing (decreasing), if for every $x_{1}, x_{2} \in X$ such that $x_{1}<x_{2}$, we have

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \quad\left(f\left(x_{1}\right)>f\left(x_{2}\right)\right)
$$

A function $f: X \rightarrow Y$ is called non-decreasing (non-increasing), if for every $x_{1}, x_{2} \in X$ such that $x_{1}<x_{2}$, we have

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right) \quad\left(f\left(x_{1}\right) \geq f\left(x_{2}\right)\right)
$$

Functions with these properties are called monotonic.

Def. 4.3 A function $f: X \rightarrow Y$ is called periodic if there exists a real number $P \neq 0$ such that for any $x \in X$

$$
x+P \in X \quad \wedge \quad f(x+P)=f(x)
$$

The number P is called a period. The smallest positive period, if it exists, is called the fundamental period.

Note: not every function has a fundamental period. For example, a constant function $f(x)=c$ defined on the entire real line is a periodic function, and its period P is any non-zero real number since $f(x+P)=f(x)$ for any $x \in \mathbb{R}$ and $P \neq 0$. However, this function doesn't have a fundamental period because there is no smallest real number.

Example 4.3 Typical examples of periodic functions are trigonometric functions. Here is a less typical example. The floor function, $\lfloor x\rfloor$, gives the largest integer less than or equal to x

$$
\lfloor x\rfloor=k \quad \Longleftrightarrow \quad k \leq x<k+1, \quad k \in \mathbb{Z}
$$

The mantissa, $\lfloor x\rfloor-x$, is defined as the positive fractional part of x.

The mantissa function $f(x)=x-\lfloor x\rfloor$ is a periodic function, which is clear from its graph and may be confirmed by the following argument.

$$
\text { Let }\lfloor x\rfloor=m \quad \Rightarrow \quad m \leq x<m+1 \quad \Rightarrow \quad m+k \leq x+k<m+k+1
$$

Since $m+k$ and $m+k+1$ are consecutive integers, then

$$
\lfloor x+k\rfloor=m+k=\lfloor x\rfloor+k
$$

where $k \in \mathbb{Z}$. Thus,

$$
f(x+k)=x+k-\lfloor x+k\rfloor=x+k-(\lfloor x\rfloor+k)=x-\lfloor x\rfloor=f(x)
$$

Which proves that the function is periodic, and any integer $k \neq 0$ is its period.

Def. 4.4 A function $f: X \rightarrow Y$ is called one-to-one (injection) if it never takes on the same value twice, i.e. for any $x_{1}, x_{2} \in X$

$$
x_{1} \neq x_{2} \quad \Longrightarrow \quad f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { notation, } f: X \xrightarrow{1-1} Y
$$

A function $f: X \rightarrow Y$ is called "onto" (surjection) if for every $y \in Y$ there exists $x \in X$ with $y=f(x)$, i.e. $R_{f}=Y$

$$
\text { notation, } f: X \xrightarrow{\text { onto }} Y
$$

A function that is both 1-1 and "onto" is called the bijection.

$$
\text { notation, } f: X \underset{\text { onto }}{1-1} Y
$$

Example 4.4 Classical example of a function that is not one-to-one is $f(x)=x^{2}$. There are of course others,

- $f(x)=4 x^{2}-x^{3}$ is not one-to-one because for instance $f(0)=0=f(4)$ - for two different arguments the function produces the same value.
- The signum, the floor and the mantissa functions are not one-to-one.

Example 4.5 The "onto" property is a bit easier. Any function $f: X \rightarrow Y$ can be a surjection if only it is defined in such a way that $R_{f}=Y$. For example,

$$
f(x)=x^{2}, \quad f: \mathbb{R} \rightarrow \mathbb{R} \quad \text { is not onto because } R_{f}=\langle 0, \infty) \neq \mathbb{R}
$$

But if we define it as

$$
f(x)=x^{2}, \quad f: \mathbb{R} \rightarrow \mathbb{R}_{+} \cup\{0\} \quad \text { then it is onto. }
$$

It is very easy to determine the above properties from a graph of a function. We had a vertical line test for checking whether a graph represents a function, we have a horizontal line test for determining whether a function is injection, surjection, or bijection.

Example 4.6

Def. 4.5 Given a bijective function f, its inverse function is a function f^{-1} such that whenever $y=f(x)$ then $f^{-1}(y)=x$, and the domain of f is the range of f^{-1}, and the domain of f^{-1} is the range of f.

$$
f: X \rightarrow Y, \quad f^{-1}: Y \rightarrow X, \quad f^{-1}(y)=x \quad \Longleftrightarrow \quad y=f(x)
$$

The graphs of f and f^{-1} are symmetric about the line $y=x$.

Example 4.7 Let's find inverse functions of the ones given below

- $f(x)=3 x-4, \quad x \in \mathbb{R}$

This is an increasing linear function with $D_{f}=\mathbb{R}$ and $R_{f}=$ \mathbb{R}, and it is a bijection. Therefore f^{-1} exists, and we may find it by rearranging the equation

$$
y=3 x-4 \quad \Leftrightarrow \quad 3 x=y+4 \quad \Leftrightarrow \quad x=\frac{1}{3} y+\frac{4}{3}
$$

So, $\quad f^{-1}(x)=\frac{1}{3} x+\frac{4}{3}$ with $D_{f^{-1}}=\mathbb{R}, R_{f-1}=\mathbb{R}$

- $f(x)=x^{2}+1, \quad x \geq 0$

Notice that if the domain of the function was not restricted but the entire real line instead, then it would not be a bijection (for instance, $f(-1)=f(1)=2$) and so the inverse would not exist. If we, however, restrict the domain to $D_{f}=\langle 0, \infty)$ then $R_{f}=\langle 1, \infty)$ and the function is a bijection $\left(f: D_{f} \rightarrow R_{f}\right)$. We can find the formula the same way as before,

$$
y=x^{2}+1 \quad \Leftrightarrow \quad x^{2}=y-1 \quad \Leftrightarrow \quad x=\sqrt{y-1}
$$

So, $\quad f^{-1}(x)=\sqrt{x-1}$ with $D_{f^{-1}}=\langle 1, \infty), R_{f^{-1}}=\langle 0, \infty)$

References

[1] Matematyka - podstawy z elementami matematyki wyszej, edited by B. Wikieł, PG publishing house, 2009.

