How to calculate complex roots

Example: $\sqrt[3]{-1} \quad$ a cubic root of -1
$z=-1 \quad$ my number z is equal to -1 (or $-1+0 i)$
$z=-1+0 i \quad \mid$ will draw z to find its angle

$$
\varphi=\pi\left(=180^{\circ}\right)
$$

Now we can calculate the modulus of z :

$$
|z|=\sqrt{(-1)^{2}+0^{2}}=1
$$

I expect to find three roots: z_{0}, z_{1}, z_{2}
$\boldsymbol{Z}_{\mathbf{0}}$ can be calculated from formula :
$z_{0}=\sqrt[3]{|z|} \cdot\left(\cos \frac{\varphi+2 \pi \cdot 0}{3}+i \cdot \sin \frac{\varphi+2 \pi \cdot 0}{3}\right)$
Because we expect to find 3 roots

$$
z_{0}=\sqrt[3]{1} \cdot\left(\cos \frac{\pi+2 \pi \cdot 0}{3}+i \sin \frac{\pi+2 \pi \cdot 0}{3}\right)=1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=1\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

Now I will draw z_{0} and find its angle, then I will try to "guess" other roots.
$\approx 0,8660 \ldots$

$\boldsymbol{\alpha}_{z_{0}=\text { ? }} \quad I$ will have 3 roots which will divide

$$
\tan \left(\boldsymbol{\alpha}_{z_{0}}\right)=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3} \quad \begin{gathered}
\text { the } 360^{\circ} \text { into } 3 \text { identical parts: } \\
\frac{360^{\circ}}{3}=120^{\circ}
\end{gathered}
$$

So each part will have 120°.
Z_{1} is on the horizontal " $R e$ " axis. And $z=\left|z_{0}\right|=\left|z_{1}\right|$

Check
$z_{0}^{3}=\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{3}=\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{2}=$
$=\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{4}+\frac{\sqrt{3}}{2} i+\frac{3}{4} i^{2}\right)=$
$=\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{4}-\frac{3}{4}+\frac{\sqrt{3}}{2} i\right)=$
$=\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(\frac{\sqrt{5}}{2} i-\frac{1}{2}\right)=$
$=\frac{\sqrt{3}}{4} i-\frac{1}{4}+\frac{3}{4} i^{2}-\frac{\sqrt{3}}{4} i=-1$
$z_{1}^{3}=(-1)^{3}=-1$
$z_{2}^{3}=\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{3}=\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)^{2}=$
$=\left(\frac{1}{2}-\sqrt{\frac{3}{2}} i\right)\left(\frac{1}{4}-\frac{\sqrt{3}}{2} i-\frac{3}{4}\right)=$
$=\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=$
$=-\frac{1}{4}-\frac{\sqrt{3}}{4} i+\frac{\sqrt{3}}{4} i-\frac{3}{4}=-1$
$z=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{3}{4}}=\sqrt{1}=1$
$z_{1}=-1$

The last root lies 120° away from $\boldsymbol{Z}_{\mathbf{0}}$
counterclockwise and it's easy to see that it's symmetrical to z_{0}
$z_{2}=\frac{1}{2}-\frac{\sqrt{3}}{2} i$
Answer: $\sqrt[3]{-1} \in\left\{\frac{1}{2} \pm \frac{\sqrt{3}}{2} i,-1\right\}$

