EXTREMES OF 2-VARIABLE FUNCTIONS

$$
\begin{aligned}
& f(x, y)=x y^{2}(12-x-y) \\
& f(x, y)=12 x y^{2}-x^{2} y^{2}-x y^{3}
\end{aligned}
$$

$1 /$

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=12 y^{2}-2 x y^{2}-y^{3} & \frac{\partial^{2} f}{\partial x^{2}}=-2 y^{2} \\
\frac{\partial f}{\partial y}=24 x y-2 y x^{2}-3 y^{2} x & \frac{\partial^{2} f}{\partial y^{2}}=24 x-2 x^{2}-6 y x \\
\frac{\partial^{2} f}{\partial x \partial y}=24 y-4 y x-3 y^{2} &
\end{array}
$$

II CRITICAL (STATIONARY) POINTS

$$
\begin{aligned}
& \left\{\begin{array}{l}
12 y^{2}-2 x y^{2}-y^{3}=0 \\
24 x y-2 y x^{2} \cdot 3 y^{2} x=0
\end{array} \quad \Rightarrow \quad y^{2}(12-2 x-y)=0\right. \\
& y=12-2 x \text { : } \\
& 24 \times(12-2 x)-2(12-2 x) x^{2}-3(12 \cdot 2 x)^{2} x=0 \\
& 288 x-48 x^{2}-24 x^{2}+4 x^{3}-3 x\left(144-48 x+4 x^{2}\right)=0 \\
& 288 x-48 x^{2}-24 x^{2}+4 x^{3}-432 x+144 x^{2}-12 x^{3}=0 \\
& -8 x^{3}+72 x^{2}-144 x=0 /: 8 \\
& -x^{3}+9 x^{2}-18 x=0 \\
& x\left(-x^{2}+9 x-18>0\right)=0 \\
& x>0 \quad \vee \quad-x^{2}+8 x-18=0 \\
& \Delta=9^{2}-4 \cdot(-18) \cdot(-1)-9 \Rightarrow \sqrt{\Delta}=3 \\
& x_{1}=\frac{-9-3}{-2}=6 \quad x_{2}=\frac{-8+3}{-2}=3 \\
& P_{1}=(0,0) \quad P_{2}=(6,0) \quad P_{8}=(3,6)
\end{aligned}
$$

DETERMINANTS

$$
\begin{aligned}
& D_{f}=\left|\begin{array}{cc}
-2 y^{2} & 24 y-4 x y-3 y^{2} \\
24 y-4 x y-3 y^{2} & 24 x-2 x^{2}-6 y x
\end{array}\right|= \\
& =\left(-2 y^{2}\right)\left(24 x-2 x^{2}-6 y x\right)-\left(\left(24 y-4 x y^{-3 y^{2}}\right)\left(24 y-4 x y-3 y^{2}\right)\right)= \\
& =-9 y^{4}-12 x y^{3}+144 y^{3}-12 x^{2} y^{2}+144 x y^{2}-576 y^{2} \\
& D f(0,0)=\left|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right|=0 \\
& D f(6,0)=\left|\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right|=0 \\
& D f(3,6)=\left|\begin{array}{ll}
-72 & -36 \\
-36 & -54
\end{array}\right|=3888-1296=2592>0 \\
& D
\end{aligned}
$$

IV ANSWER

$$
f(3,6)=12 \cdot 3 \cdot 6^{2}-3^{2} 6^{2}-3 \cdot 6^{3}=324 \text { is a maximum }
$$

As the value of detervinalits in points $P_{A}=(0,0)$ and $P_{2}=(6,0)$ are equal to zero we can not state whether they ore ariviuun values or saddle points.

Here, I present two graphs of $f(x, y)$ in a close surrounding of points $(0,0)$ and $(3,6)$. The surrounding of $(0,0)$ here is $[-0.1,0.1] \times[-0.1,0.1]$ and the surrounding of $(3,6)$ is $[2.9,3.1] \times[5.9,6.1]$.

WolframAlpha manam

plot $12^{*} x^{*} y^{\wedge} 2-x^{\wedge} 2^{*} y^{\wedge} 2-x^{*} y^{\wedge} 3, x=-0.1 . .0 .1, y=-0.1 . .0 .1$

Input interpretation:

$$
\begin{array}{l|l|l}
\hline \text { plot } & 12 x y^{2}-x^{2} y^{2}-x y^{3} & x=-0.1 \text { to } 0.1 \\
y=-0.1 \text { to } 0.1
\end{array}
$$


```
plot 12* *}\mp@subsup{x}{}{*}\mp@subsup{y}{}{\wedge}2-\mp@subsup{x}{}{\wedge}\mp@subsup{2}{}{*}\mp@subsup{y}{}{\wedge}2-\mp@subsup{x}{}{*}\mp@subsup{y}{}{\wedge}3,x=2.9..3.1, y=5.9..6.
```


