Extremes of two variable function

$$
f(x, y)=x^{3}+y^{3}-9 x y+27
$$

I Portia derivatives

$$
\begin{aligned}
& \frac{f f}{\partial x}=3 x^{2}-9 y \\
& \frac{\partial f}{\partial y}=3 y^{2}-9 x \quad \frac{\partial^{2} f}{\partial x^{2}}=6 x \quad \frac{\partial^{2} f}{\partial y^{2}}=6 y
\end{aligned} \quad \frac{\partial^{2} f}{\partial x \partial y}=\left(3 x^{2}-9 y\right)^{\prime} y=-9
$$

T critical stationary points

$$
\begin{aligned}
& 3 x^{2}-9 y=0 \Rightarrow 3 x^{2}=9 y \Rightarrow x^{2}=3 y \Rightarrow y=\frac{x^{2}}{3} \\
& 3 y^{2}-9 x=0 \Rightarrow \\
& \quad 3 \cdot\left(\frac{x^{2}}{3}\right)^{2}-9 x=0 \\
& \\
& 8^{1} \cdot \frac{x^{4}}{9_{3}}-9 x=0 / \cdot 3 \\
& \\
& x^{4}-27 x=0 \\
& \\
& x\left(x^{3}-27\right)=0 \\
& x=0 \quad x=3 \\
& y=0 \quad y=3 \\
&
\end{aligned}
$$

PII. Determinents

$$
\begin{aligned}
& D_{f}=\left|\begin{array}{cc}
6 x & -9 \\
-9 & 6 y
\end{array}\right| \\
& D_{(0,0)}=\left|\begin{array}{cc}
0 & -9 \\
-9 & 0
\end{array}\right|=-81<0,\left.(6 x)\right|_{(0,0)} \begin{array}{c}
\text { SADDVE } \\
\text { SANT }
\end{array} \\
& D_{f(3,3)}=\left|\begin{array}{cc}
18 & -9 \\
-9 & 18
\end{array}\right|=324-81=243>0,\left.(6 x)\right|_{(3,3)=18>0} \begin{array}{l}
\text { MINMUM }
\end{array}
\end{aligned}
$$

IV Ansaver
$f(0,0)=27$ soddle point
$f(3,3)$ is minimum

$$
=27+27-54+27=81-54=27
$$

The surrounding of $(0,0)$ here is $(-0,1.0,1) \times(-0,1.0,1)$ and surrounding of $(3,3)$ is $(2,9.3,1) \times(2,9.3,1)$.

WolframAlpha
 computational
 knowledge englne

plot $x^{\wedge} 3+y^{\wedge} 3-9 x y+27, x=-0.1 . .0 .1, y=-0.1 .0 .1$ E

3D plot:

WolframAlpha: knowledge englne

plot $x^{\wedge} 3+y^{\wedge} 3-9 x y+27, x=2.9 .3 .1, y=2.9 . .3 .1$

