An example of using polar coordinates in double integrals: Exercise: Calculate $\iint_{D} \frac{1}{\left(1-x^{2}-y^{2}\right)^{2}} d x d y$, where $D=\left\{(x, y): 1 \leqslant x^{2}+y^{2} \leqslant \frac{9}{4}\right.$, and $x \leqslant 0$ and $y \leqslant x\}$
SOLUTION: First, I draw a region D :

* $1 \leqslant x^{2}+y^{2} \leqslant\left(\frac{3}{2}\right)^{2}$

宩 $x \leqslant 0, y \leqslant x^{*}$

$r \in\left[1, \frac{3}{2}\right]$
I will use the formula:
\Rightarrow

$$
f(r \cos \varphi, r \sin \varphi)=\frac{1}{\left(1-r^{2} \cos ^{2} \varphi-r^{2} \sin ^{2} \varphi\right)^{2}}=\frac{1}{\left(1-r^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\right)^{2}}=\frac{1}{\left(1-r^{2}\right)^{2}}
$$

$$
\iint_{D}\left(\frac{1}{\left(1-x^{2}-y^{2}\right)^{2}}\right) d x d y=\int_{\varphi=\frac{3}{2} \pi}^{\frac{3}{2} \pi} \int_{r=1}^{\frac{3}{2}}\left(\frac{1}{\left(1-r^{2}\right)^{2}}\right) \cdot r d r d \varphi=
$$

$$
=\int_{\frac{5 \pi}{4}}^{\frac{3 \pi}{2}} d y \cdot \underbrace{\int_{0}^{-\frac{5}{4}} \frac{1}{t^{2}} d t}_{0 \in D \frac{1}{t^{2}}}
$$

$$
\lim _{A \rightarrow 0} \int_{A}^{\frac{-5}{4}} t^{-2} d t=\left.\lim _{A \rightarrow 0} \frac{t^{-1}}{-1}\right|_{A} ^{-\frac{5}{4}}=\lim _{A \rightarrow 0}-\left.\left(\frac{1}{t}\right)\right|_{A} ^{-\frac{5}{4}}=\lim _{A \rightarrow 0}-\left(\frac{1}{-\frac{5}{4}}-\frac{1}{A}\right)=\lim _{A \rightarrow 0}\left(\frac{4}{5}+\frac{1}{A}\right)=\infty
$$

\mathcal{A} author: carolina \mathcal{K}., II year $\mathcal{E} \mathcal{P} \mathcal{M}$ student

