GDAŃSK UNIVERSITY OF TECHNOLOGY

CONSTRUCTING AUTONOMOUS AGENTS USING THE COGNITIVE-EMOTIONAL ARCHITECTURE OF THE MIND

IC on Information Systems Architecture and Technology, Nysa 2018

Z. Kowalczuk and M. Czubenko

Gdańsk University of Technology Faculty of Electronics, Telecommunications and Informatics Department of Decision Systems and Robotics

Table of contents

- 1 Introduction to Modeling the Human Brain
- 2 Decision Systems
- Intelligent System of Decision-making Cognitive Psychology Personality Psychology
- 4 eSailor Simulation
- Substitution of the sub
- **6** Summary

Reasons for Brain Modeling

Philosophical

- How do we perceive?
- How are we focusing?
- How do we remember?
- How do we think?
- Why do we think?

Artificial Intelligence

Cybernetic

- Imitation of real systems
- Various tools

Statistic

- Statistical modeling
- Sophisticated tools

Symbolic (syntetic)

- functions of AI (GA, FUZ, EXP; TDU, Bbox)
- high-level modeling, large/imprecise structures

Sub-symbolic (embodied)

- defined tasks/answers (ANN, AssN; BUA, B/Wbox)
- self-training structures, small structures

Definitions

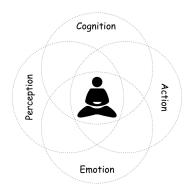
Intelligence

Intelligence is the ability of active processing of cognitive information in order to adapt to the changing environment and to gain own, specific purposes or common goals

Embodiment

Mechanism under the control of an intelligence core that contains sensors and actuators connected with this core via communication channels

Cognitive Science - Embodied Intelligence


Higher intelligence also needs aspects of the body (movement, perception and visualization)

Mind Functioning

Aspects of modeling

- Perception
- Objects recognition
- Motivation
- Representation & memory
- Virtual imagination
- Behavior & planning

Decision-making Paths

Classical

- Optimization
- Well-defined problems

Cognitive

- Finding a solution for real problems
- Uncertainty, risks, social aspects

Artificial Decision-making Systems

General concepts of motivation

- Behavior-based
- Beliefs-Desires-Intentions
- 3 Emotional
- A Needs driven
- **6** Cognitive hybrid: (3) & (4)

Combination of Psychological Models in ISD

Cognitive Aspects

- the way of processing the information
- from stimuli to reaction

Motivation theory: identify the problem & seek solutions

- (fuzzy system of) needs
- (rainbow of) emotions

Sensory Perception

Sequence of operation

- getting stimuli
- first–level of filtering
- writing information to ultra—short time memory

Higher perceptions

Impressions

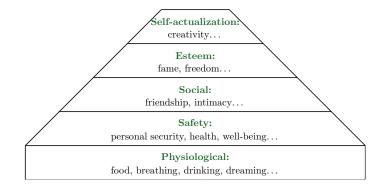
- recognizes impressions (lines, color, texture, sounds, odors, ...)
- filters impressions (the second level of filtration)

Discovery perception

- converts impressions to discoveries (objects, observations)
- compares unrecognised discoveries to the memorized discoveries
- creates new discoveries

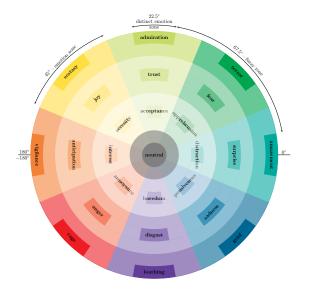
Attention: data filtering & resource management

Unconscious


- filters discoveries
- administers cognitive resources (actuators)
- analyses and memorizes discoveries

Conscious

- controls perception
- names new discoveries



Fuzzy Needs in Maslow's Pyramid

ISD Emotions Theory (eRainbow)

ISD Emotions I

Division by culture

- classic emotion generalized (predefined, common emotions)
- equalia personal emotion (undefined, abstract, private emotions)

ISD Emotions II

Division by time

- sub-emotion (short time)
 based on discoveries from memory (eg., joy of having a teddy bear)
- emotion (average time)
 created from the states of needs and sub-emotions
- mood (long time)
 based on a ('derivative') TAWS mechanism

eSailor's Emotional Discoveries

Objects in agents attention

• tiller (helm): trust

boom: apprehension

sail: joy

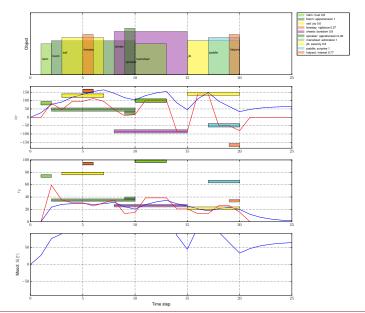
forestay: vigilance

sheets: boredom

spinaker: apprehension

mainsail: admiration

jib: serenity


paddle: surprise

halyard: interest

eSailor's Emotion Mood Evolution

eDriver: Scenario Elements

Table: The scenario of a simulation study.

Distance [km]	Scenario element	
0.1	recommended speed 90 km/h	
1.0	recommended speed 50 km/h	
1.2	zebra sign	
1.4	zebra	
1.6	cancel of 50 km/h	
2.8	recommended speed 30 km/h	
3.2	left lane order	
3.4	road narrows	
3.8	3.8 end of road narrows	
4.6	right lane order	
4.8	cancel of 30 km/h	
4.9	pedestrian on the road	

xDriver Needs

Level of Maslow class: need

- physiological/principal level: energy optimization
- physiological level: goal achievement
- safety level: security of car
- safety level: traffic regulations
- (self-)esteem level: speed
- (self-)esteem level: confidence
- self-actualization level: creativity.

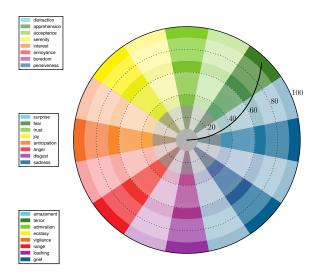

xDriver Reactions

Table: Reactions of the xDriver agent.

Distance [km]	xDriver reaction	xDriver emotion
0.00	increment speed to value: 90	indifference
0.66	brake to value: 50	indifference
0.79	keep current speed value: 0	indifference
0.85	increment speed to value: 50	indifference
1.06	brake to value: 50	indifference
1.09	keep current speed value: 0	indifference
1.26	increment speed to value: 90	indifference
2.09	keep current speed value: 0	indifference
2.45	brake to value: 30	indifference
2.62	keep current speed value: 0	indifference
3.25	keep current speed value: 0	indifference
4.45	increment speed to value: 90	indifference
4.61	increment speed to value: 90	distraction
4.63	emergency brake value: 0	surprise
4.63	emergency brake value: 0	fear
4.65	emergency brake value: 0	terror
4.85	keep current speed value: 0	terror
4.85	keep current speed value: 0	fear
4.85	keep current speed value: 0	surprise
4.85	keep current speed value: 0	distraction
4.85	increment speed to value: 90	indifference
5.65	keep current speed value: 0	indifference

eRainbow Evolution of xDriver's Emotion

ISD Applications

Possibilities

- embedded control system of autonomous robots (eg. guardians)
- control system of groups of robots
- engine of chatterbot
- modelling human behaviour

The Literature

Publisher: Title (link)

- AMCS: Intelligent decision-making system for autonomous robots (https://content.sciendo.com/view/journals/amcs/21/4/article-p671.xml)
- Cognitive Computation: Autonomous driver based on an intelligent system of decision-making (https://link.springer.com/article/10.1007/s12559-015-9320-5)
- IFAC: Emotions embodied in the SVC of an autonomous driver system (https://www.sciencedirect.com/science/article/pii/S2405896317309448)
- FRAI: Computational approaches to modeling artificial emotion—an overview of the proposed solutions
 - (https://www.frontiersin.org/articles/10.3389/frobt.2016.00021/full)

The End

THANK YOU FOR YOUR ATTENTION

