
Gdańsk University of Technology

Department of Decision Systems (ETI)

Narutowicza 11/12, 80-952 Gdańsk, Poland
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1 Introduction

In this report we present explicit formulae for the discrete-time prediction of
the 2-dimensional process described by a continuous-time stochastic model.
A standard procedure of prediction would require a numerical evaluation of
the fundamental matrix etA and numerical integration of the object differential
equation. We can, however, derive explicit equations for the state prediction in
a 2-dimensional case (i.e. for state vectors with two coordinates) based on an
explicit formula for calculating the matrix etA. Such a 2-dimensional model is
useful in object tracking and robotics, for example, to describe the state of an
object moving in the two dimensional Euclidean plane (with states correspond-
ing to positions in X and Y). Of importance are also kinematic models with
states corresponding to both position and velocity. The presented prediction
method based on explicit equations is not numerically expensive and can be
implemented on resource-constrained computers like embedded systems.

2 C-T Gauss-Markov Model

We consider the following 2-dimensional linear stochastic differential equation [2,
4]

dX(t) = [AX(t) + b] dt+ σdw(t), 0 ≤ t <∞,
X(0) = X0,

(1)

where w is the 2-dimensional Brownian motion independent of the initial vector
X0, which has a given 2-variate normal distribution. The (2 × 2), (2 × 1) and
(2 × 2) matrices A, b, and σ, respectively, are nonrandom and bounded (and
measurable 2).

The solution of (1) has the following representation [2]:

X(t) , Φ(t)
[
X(0) +

∫ t

0

Φ−1(η)bdη +
∫ t

0

Φ−1(η)σdw(η)
]
,

0 ≤ t <∞,
(2)

where Φ(t) is a nonsingular matrix called the fundamental solution to the fol-
lowing homogeneous ordinary differential equation

ζ̇(t) = Aζ(t). (3)

The fundamental solution to (3) can be calculated as

Φ(t) = etA ,
∞∑
i=0

ti

i!
Ai. (4)

With the mean vector and covariance matrix functions defined as

m(t) , EX(t),

ρ(t, τ) , E
{

[X(t)−m(t)] [X(τ)−m(τ)]T
}
,

V (t) , ρ(t, t),

(5)

2i.e., given a probability space (Ω,F , P ), and a measurable space (R,B(R)), a function
f : Ω → R is measurable, if for any Borel set B ∈ B(R), the inverse image f−1(B) ∈ F
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it can be shown that

m(t) = Φ(t)
[
m(0) +

∫ t

0

Φ−1(η)bdη
]
,

ρ(t, τ) = Φ(t)

[
V (0) +

∫ t∩τ

0

Φ−1(η)σ
[
Φ−1(η)σ

]T
dη

]
ΦT (τ),

V (t) = Φ(t)

[
V (0) +

∫ t

0

Φ−1(η)σ
[
Φ−1(η)σ

]T
dη

]
ΦT (t)

(6)

hold for every 0 ≤ t, τ < ∞, where t ∩ τ , min {t, τ}. It can be proved that
X in (2) is a Gaussian process, thus the finite-dimensional distributions of the
process X are completely determined by the mean and the covariance functions
[2].

3 A Sampled-Data Model

For any two concrete time moments τ and t, τ ≤ t, the following transitional
(reference) equation results from the c-t model described above by (1)–(6):

x(t) = F (t, τ)x(τ) + u(t, τ) + w(t, τ), (7)

with

F (t, τ) = Φ(t)Φ−1(τ), (8)

u(t, τ) = Φ(t)
∫ t

τ

Φ−1(η)bdη, (9)

w(t, τ) = Φ(t)
∫ t

τ

Φ−1(η)σdw(η), (10)

where (10) represents the Ito stochastic integral, which can be calculated by
parts [3]. The mean of (10) is E {w(t, τ)} = 0,∀t, τ , and the covariance matrix
of (10) is

Q(t, τ) , E
{
w(t, τ) [w(t, τ)]T

}
= Φ(t)

[∫ t

τ

Φ−1(η)σ
[
Φ−1(η)σ

]T
dη

]
ΦT (t).

(11)

A necessary discrete-time signal (z ∈ Rp) of observations of the system x(t),
associated with the sensor can be described by the following equation:

z(t) = H(t)x(t) + ξ(t), (12)

where p ∈ N+, H(t) is a p × 2 observation matrix, and ξ ∈ Rp represents
zero-mean Gaussian discrete-time measurement noise with a known covariance
matrix

R(t) , E
{
ξ(t) [ξ(t)]T

}
. (13)
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4 Explicit Form of the Sample-Data Model

Repetitive numerical evaluation of (8), (9) and (11), necessary for the sample-
data model (7), can be computationally expensive, thus their explicit forms are
desirable. Therefore, in the following we show explicit equations for calculat-
ing the matrix eA for the 2-dimensional case. Based on these results, explicit
equations for calculating (8), (9) and (11) are then presented.

4.1 Calculating eA

Let us consider a general real matrix A of size (2× 2)

A =
[
a b
c d

]
. (14)

To calculate the matrix eA, explicitly, three cases are considered [1]:

i) if (a− d)2 + 4bc = 0, then

eA = eα
(
I + Ā

)
, (15)

ii) if (a− d)2 + 4bc > 0, then

eA = eα
(

cosh(δ)I +
sinh(δ)
δ

Ā

)
, (16)

iii) if (a− d)2 + 4bc < 0, then

eA = eα
(

cos(δ)I +
sin(δ)
δ

Ā

)
, (17)

where α = a+d
2 , I is the (2× 2) identity matrix, Ā is defined as:

Ā =
[
a−d

2 b
c −a−d2

]
, (18)

and

δ =

√
|(a− d)2 + 4bc|

2
. (19)

4.2 Calculating F, u and Q

In the following section we use the same definitions of δ, I and Ā as in the
previous section. Based on the above findings for the explicit calculation of the
matrix eA, the transition matrix (8), for any two time moments t and τ , t > τ ,
can by calculated, for the three cases considered, as follows:

i)
F (t, τ) = e(t−τ)A = e∆A

= exp
{

∆
[
a b
c d

]}
= exp

{[
∆a ∆b
∆b ∆c

]}
= e∆α

(
I + ∆Ā

)
,

(20)

and similarly
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ii)

F (t, τ) = e∆α

(
cosh(∆δ)I +

sinh(∆δ)
δ

Ā

)
, (21)

iii)

F (t, τ) = e∆α

(
cos(∆δ)I +

sin(∆δ)
δ

Ā

)
, (22)

where ∆ = t− τ , ∆ > 0.
Using the above results and the integral calculus, the discretized input (9)

results in:

i)

u(t, τ) =
{

∆I +
∆2

2
Ā
}
b, for α = 0, (23)

and

u(t, τ) =
{(

e∆α

α
I − 1

α
I

)
+
(
e∆α

α
(∆− 1

α
)Ā+

1
α2
Ā

)}
b

=
1
α

{
e∆α

[
I +

(
∆− 1

α

)
Ā

]
+

1
α
Ā− I

}
b, for α 6= 0

(24)

ii)

u(t, τ) =

{
β1

2

(
I +

1
δ
Ā

)
+
β2

2

(
I − 1

δ
Ā

)}
b, (25)

where

β1 =

{(
e∆(α+δ) − 1

)
/ (α+ δ) , for α+ δ 6= 0, and,

∆, for α+ δ = 0,

β2 =

{(
e∆(α−δ) − 1

)
/ (α− δ) , for α− δ 6= 0, and,

∆, for α− δ = 0.

(26)

iii)

u(t, τ) =

{[
e∆αα cos(∆δ) + δ sin(∆δ)

α2 + δ2
− α

α2 + δ2

]
I

+
[
e∆αα sin(∆δ)− δ cos(∆δ)

α2 + δ2
+

δ

α2 + δ2

]
1
δ
Ā

}
b

=

{
e∆α

[
cos(∆δ)(αI − Ā) + sin(∆δ)(δI + (α/δ)Ā)

]
− αI + Ā

α2 + δ2

}
b.

(27)

Though we assume the matrix b to be constant in time, it can be different for
each integration interval [τ, t]. Eventually, if the matrix b = b(t) is a known
function of time, the appropriate equations for such a case, equivalent to (23)–
(27), can be derived.

Finally, the equations for the covariance matrix (11), for the three cases, are:
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i)

Q(t, τ) =
(
ĀσσT ĀT

) ∆3

3
+
(
ĀσσT + σσT ĀT

) ∆2

2
+ σσT∆, (28)

for α = 0, and

Q(t, τ) =
1

2α

[(
ĀσσT ĀT

)(
e2∆α

(
∆2 − ∆

α
+

1
2α2

)
− 1

2α2

)
+
(
ĀσσT + σσT ĀT

)( 1
2α

+ e2∆α

(
∆− 1

2α

))
+ σσT

(
e2∆α − 1

)]
,

(29)

for α 6= 0.

ii)

Q(t, τ) =
β

2

(
σσT − ĀσσT ĀT

δ2

)
+
β3

4

(
σσT +

ĀσσT ĀT

δ2
+
ĀσσT + σσT ĀT

δ

)
+
β4

4

(
σσT +

ĀσσT ĀT

δ2
− ĀσσT + σσT ĀT

δ

)
,

(30)

where

β =

{
(e2∆α − 1)/(2α), for α 6= 0, and,
∆, for α = 0,

(31)

and

β3 =

{(
e2∆(α+δ) − 1

)
/ (2(α+ δ)) , for α+ δ 6= 0, and,

∆, for α+ δ = 0,

β4 =

{(
e2∆(α−δ) − 1

)
/ (2(α− δ)) , for α− δ 6= 0, and,

∆, for α− δ = 0.

(32)

iii)

Q(t, τ) =
β

2

(
σσT +

ĀσσT ĀT

δ2

)
+

+
e2∆α [α cos(2∆δ) + δ sin(2∆δ)]− α

4(α2 + δ2)

(
σσT − ĀσσT ĀT

δ2

)
+
e2∆α [α sin(2∆δ)− δ cos(2∆δ)] + δ

4(α2 + δ2)

(
ĀσσT + σσT ĀT

δ

)
,

(33)

with β defined as in (31).

5 Conclusions

In this report we have presented a method for discrete-time prediction of 2-
dimensional object models. This method can be easily extended for higher
dimensional models whenever the explicit formulae for the requisitive matrix
exponential are available.
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