
Experiment 1

DETERMINATION OF YOUNG’S MODULUS
BY THE RESONANCE METHOD

The aims  of the  experiment  are  to  study the frequency
dependence of the forced oscillations of a short solid bar and
to determine Young’s modulus of a solid by measuring the
resonance frequency.

INTRODUCTION

1. The speed of propagation  of  longitudinal  as  well  as transverse  waves is
determined by the mechanical properties of the medium.

Fig. 1.1. Illustration of the compression of a solid bar by force F

Figure  1.1  shows  an  end–section  of  a  solid  bar  with  density  r and  cross–
sectional area A. At t=0 a force F is applied to one end of the bar. It makes the
bar compress at the end and the end portion of the bar moves with speed vx. It
also initiates a wave motion that travels with a speed v to the right along the bar.
After time Dt the wave  has moved a distance vDt, but the left end of the bar has
compressed by vx Dt.

The speed of propagation of the wave can be computed from the impulse–
momentum theorem

F t pD D (1.1)



The change of momentum Dp is calculated for the cylinder with length vDt and
cross–sectional area A set in motion at time Dt with a speed vx

D Dp A v t v x r (1.2)

It has been assumed that all parts of the cylinder have the same speed v x. The
force F, producing the contraction of the bar is computed from Hooke’s law.
The original length of the cylinder v Dt has decreased by an amount vx Dt and

the pressure 
F

A
 exerted on the bar is 

F

A
E

v t

v t
x


D

D
(1.3)

where E is Young’s modulus. The impulse is
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Applying the impulse–momentum theorem it is found
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and the speed of propagation v of the longitudinal wave is given by
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E
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The  speed  depends  only  on  the  Young’s  modulus  and  the  density  of  the
medium.

2. When a longitudinal wave propagates in a solid bar with finite length, the
wave is reflected from the ends. The superposition of incoming and reflected
waves  traveling  in  opposite  directions  forms  a  standing  wave.  If  the  bar  is
rigidly held in the middle by a support both free ends must be antinodes and the

middle must be a node with adjacent nodes being one half wavelength  


2
 apart

(figure 1.2).
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Fig. 1.2. Standing waves in a bar held rigidly in the middle by a support.
N indicates nodes and A antinodes

The wavelength, , must therefore be related to the length of the bar, L, by

L n


2
          (n = 1, 3, 5,...) (1.7)

where n is an odd integer number. Solving this equation for  , the following
possible values of the wavelength n are obtained
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Corresponding  to  these  wavelengths  are  the  possible  frequencies  fn of  the
oscillations in the bar
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where v is the velocity of propagation of the wave. The smallest frequency f 1

corresponding to n = 1 (figure 1.2a) where,
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is called the fundamental frequency. The other frequencies  f3, f5,... are integer
multiples of f1 and are called harmonics.

3. Mechanical  systems  (for  example  a  solid  bar)  have  normal  modes  of
oscillations.  In  each  mode  all  particles  of  the  system  oscillate  with  simple
harmonic motion with the same frequency. In the previous section it has been
shown that  the standing wave oscillations  of a bar have an infinite  series of
normal  mode  frequencies  fn.  If  a  periodically  varying  force  is  applied  to  a
system it  is forced to vibrate with a frequency equal to the frequency of the
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force. This vibrational motion of the system is greatest when the frequency of
the force is equal to one of the normal mode frequencies. The system then is in
mechanical  resonance  with  the  external  force.  For  other  values  of  the  force
frequency the amplitude of the motion is in general relatively small. Figure 1.3
shows a graph of the amplitude a of forced oscillation as a function of frequency
f of the force. This curve is called a resonance curve. It reaches a maximum at a
normal mode frequency fn.

Fig. 1.3. Resonance curve: a graph of the amplitude a as a function
 of frequency f. W is the width of the resonance curve

The width of the resonance curve W is measured at an amplitude equal to half
of its maximum value. The width W is small giving a sharply peaked resonance
curve when there is little friction or other energy dissipation in the system.

APPARATUS AND METHOD

Young’s modulus is obtained from the expression

E v
2
r (1.11)

which is derived from (1.6). The velocity v is obtained from measurements of
the fundamental frequency f1 by a resonance method. It is next calculated from 

v f L2 1
(1.12)

where L is the length of the solid bar. 
The  experimental  setup  used  to  measure  the  fundamental  frequency  is

shown schematically in figure 1.4 It consist of a solid bar supported horizontally
in the middle  of its  length by a clamp, a driving coil  connected to an audio
signal  generator  and  a  pick-up  coil  connected  to  an  oscilloscope.  A small
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ferromagnetic  disc  is  attached to  each end of  the  solid  bar.  This  allows  the
production of oscillations in the bar by the driving coil and also the detection of
the movement of the other end of the bar by the pick-up coil. The amplitude of
the  oscillations  is  measured  by  observing  the  signal  on  the  screen  of  the
oscilloscope.  In  the  experiment  the  amplitude  of  the  signal  on the screen  is
measured as a function of the frequency of the signal generator to obtain the
resonance curve and to determine the frequency of the fundamental mode f1..

Fig. 1.4. Schematic diagram of the experimental setup used in the measurements of the
fundamental frequency of the oscillations

 of the solid bar

MEASUREMENTS

1. Measure the amplitude of oscillations as a function of frequency for the three
bars  provided  which  are  made  of  steel,  copper  and  brass.  Change  the
frequency in steps of 1Hz in the range from 3405Hz to 3435Hz for the brass
bar, from 3855Hz to 3885Hz for the copper bar and from 5190Hz to 5220Hz
for the steel bar. Plot a graph for each set of data to obtain the resonance
curve. From the curve find the frequency of the fundamental mode f 1  and
the resonance curve width W for each bar.

2. Calculate the velocity of sound and Young’s modulus for the three materials
measured (steel, copper and brass). The densities of the above materials are
as follows:

 steel - (7.88± 0.01)´103kg/m3 
 copper - (8.81± 0.01)´103kg/m3 
and brass - (8.70± 0.01)´103kg/m3.

Compare the obtained values with that given in table 4 and table 5.
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ANALYSIS OF ERRORS

The errors in the measurements of the velocity, Dv, and Young’s modulus,
DE, are calculated from the expressions

D D Dv L f f L 2 2 (1.13)

and

D D DrE v v v 2 2
r (1.14)

obtained from the differentiation of (1.11) and (1.12). Here  Df is the error in
measurement of the frequency, DL of the bar length and Dr of the density of bar
material.

QUESTIONS

1. Give the detail of the derivation of equation (1.6) for the velocity of the wave.
2. Explain the appearance and properties of a standing wave.
3. What are the harmonic frequencies of vibration of a string held at its two
ends.
4. Energy can be transferred by waves.  Explain why standing waves can not

transfer energy.
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