
Experiment 8

DETERMINATION OF THE RATIO 
OF THE SPECIFIC HEATS k=CP/CV OF AIR

The ratio of the molar heat capacity at constant pressure
Cp to that at constant volume Cv for air is measured using the
Clement and Desormes’ method.

INTRODUCTION

1. The specific heat capacity of a gas can be measured either under conditions
of constant volume or under conditions of constant pressure. The quantity of
heat  DQv needed to increase the temperature of n moles of the gas by  DT at
constant volume is

D DQ nC TV V (8.1)

where Cv is the molar heat capacity (molar specific heat) at constant volume. If
the temperature of the gas is increased at constant pressure the amount of heat
DQp is

D DQ nC Tp p (8.2)

where Cp is the molar heat capacity at constant pressure. The heat DQp is higher
than DQv for the same increase DT because at constant pressure the gas expands
and does some work. The work DW of the gas for small change of its volume
DV is 

D D DW p V n R T  (8.3)

where the change DV is expressed in terms of DT using the ideal gas equation

D D DWpVnRT  (8.4)

Now the heat DQp is

D D DQ Q Wp V  (8.5)

and by substituting (8.1),(8.2) and (8.3) it is found that



C C Rp V  (8.6)

The molar heat capacity of an ideal gas at constant pressure is higher than the
molar heat capacity at constant volume. The difference is the gas constant R. 

The molar heat capacities of gases are related to their molecular structures,
but the ratio

k
C

C

p

V
(8.7)

to a good approximation is constant for a given group of gases with the same
structure. The  k ratios can be predicted from kinetic theory of gases with the
help of the principle of equipartition of energy. This principle states that each
degree of freedom of movement of a molecule in the gas is associated with an

average kinetic energy of 

1

2 RT for one mole of the gas. The number of degrees
of freedom i is equal to the number of velocity components needed to describe
the motion of the molecule. This is illustrated for a diatomic molecule in figure
8.1 which has five degrees of freedom, three with the translational motion along

Fig. 8.1. Illustration of degrees of freedom for the case of a diatomic
molecule AB. vx, vy, vz, and wy, wz indicate the translational and

angular velocities respectively

 x,y,z axis (as for an atom) (figure 8.1a) and two with the rotational motion about
two  possible  axis  of  rotation  z,y  (figure  8.1b).  Vibrational  motion  of  the
molecule  would  also  contribute  to  the  number  of  degrees  of  freedom,  but
vibrational motion is not excited at room temperature. The total kinetic energy of

one mole of gas is 

1

2 iRT and the molar heat capacity at constant volume is 
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C iRV 
1

2 (8.8)

Thus from (8.6) and (8.7) for a monatomic gas (i = 3)

k 
5

3
167. (8.9)

and for a diatomic gas (i = 5)

k 
7

5
140. (8.10)

2. An  adiabatic  process  is  a  thermodynamic  process  in  which  no  heat  is
transferred  between  a  system  and  its  surroundings.  The  heat  flow  can  be
prevented  by  either  insulating  thermally  the  system  or  by  carrying  out  the
process  so quickly that  the  heat  transfer  is  negligible.  From the first  law of
thermodynamics  taking  DQ=0  the  following  equations  are  obtained  for  an
adiabatic process

pV constk
 (8.11)

and

TV constk


1 (8.12)

APPARATUS AND METHOD

The measurements of k are carried out using the apparatus shown in figure
8.2. It consists of a large vessel whose outlet is closed by valve V. The vessel is
connected  to  a  pump  and  also  to  an  oil  manometer  M  which  allows  the
measurement of pressure in the vessel. In the experimental procedure some air is
pumped into the vessel and when its temperature has reached the temperature of
the surroundings the manometer reading h1 is taken. Then the valve V is opened
to  produce  an  adiabatic  cooling  of  the  gas  by  sudden expansion  and closed
again.  Now  the  temperature  of  the  gas  increases  producing  an  increase  of
pressure  at  constant  volume  and  when  it  attains  the  temperature  of  the
surroundings the manometer reading h2 is again taken.
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Fig. 8.2 Experimental setup used to measure the ratio k of the specific heats
of air. V indicates a valve and M an oil manometer

The initial pressure of the gas in the vessel is h1+P and the final pressure of
the gas is h2+P where P is the external atmospheric pressure. For the adiabatic
change

 h P V PV1 1 2 
k k (8.13)

where V1 and V2 are the initial and final volume of the gas. Because the initial
and final temperatures of the gas are the same we have an isothermal change for
which

 h P V PV1 1 2  (8.14)

Substituting for 

V

V
1

2  from (8.14) into (8.13) 
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(8.15)

Expanding by the binomial theorem for small  

h

P
1

and  

h

P
2

and neglecting their
higher powers it is found that

 1 1 11 2
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h
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h

P (8.16)

and
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k

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h h
1

1 2
(8.17)

MEASUREMENTS

1. Find the ratio  k for air performing 10 measurements of h1 and h2. Calculate
the mean value of  k and its standard deviation. (see (6) for the expression
used to calculate the standard deviation). Compare the obtained value with
that given in table 8.

QUESTIONS

1. Draw a graph showing the changes of pressure and volume of the gas in the
experiment.

2. An ideal gas expands adiabatically and its volume doubles. In which case is
the pressure change higher a) the gas is monatomic, b) the gas is diatomic?

3. An ideal gas has k=1.3. Find the molar heat capacity at constant volume and
the molar heat capacity at constant pressure.

4.  Describe the following thermodynamic processes:  isothermal,  isobaric  and
isochoric processes, and illustrate them by graphs on the pV surface.
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