14th GERMAN-POLISH WORKSHOP ON *Dynamical Problems in Mechanical Systems* Wandlitz (Germany), 31.08– 03.09.2015

DYNAMICAL PROBLEMS IN MECHATRONIC SOLUTIONS APPLIED TO SURVEILLANCE OF MECHANICAL SYSTEMS

Krzysztof J. KALIŃSKI, Marek CHODNICKI, Marek A. GALEWSKI, Michał MAZUR

Group of Mechatronics

FACULTY OF MECHANICAL ENGINEERING

Gdańsk / Danzig

FACULTY OF MECHANICAL ENGINEERING

Gdansk University of Technology

- about 25000 students
- 9 faculties
- 7 kinds of doctorate courses
- 29 fields of study
- 40 postgraduate courses
- 1200 academic teachers

Faculty of Mechanical Engineering

- 250 graduates annually
- 6 fields of study
- 3 postgraduate courses
- doctorate course
- 123 academic teachers

- Vibration surveillance during machining
- Control of 2-wheeled mobile platforms / mobile robots
- Systems' surveillance by the optimal control at energy performance index
- Modal parameters' identification

Dynamic systems surveillance - a set of intentional activities, aimed at securing the desired performance of a dynamic process.

The systems surveillance depends upon:

- **monitoring** of physical quantities, which affect the process quality (e.g. vibration level, amplitude of displacements)
- generation of instantaneous values of control command, in accordance with a proper rule being applied.

Publications

- 1. Chodnicki M., Kaliński K. J., Galewski M.: *Vibration surveillance during milling of flexible details with a use of the active optimal control.* Journal of Low Frequency Noise, Vibration and Active Control, Vol. 32, No. 1&2 2013.
- 2. Kaliński K. J., Mazur M., Galewski M.: *The optimal spindle speed map for reduction of chatter vibration during milling of bow thruster blade*. Solid State Phenomena 2013, Vol. 198, s.686-691.
- **3.** Chodnicki M., Panasiuk-Chodnicka A.A., Ławreszuk D., Kulwicki Ł., Jażdżewski M.: Innovative Autonomous Underwater Vehicle (AUV) for research of state of environment in hard condition. XXXIII SCAR Biennial Meetings 2014 Open Science Conference, Auckland.
- 4. Kaliński K. J., Galewski M. A.: Vibration Surveillance Supported by Hardware-In-the-Loop Simulation in Milling of Flexible Workpieces. Mechatronics 2014, 24, 8,1071–1082.
- 5. Kaliński K. J., Galewski M., Mazur M., Chodnicki M.: Vibration surveillance for efficient milling of flexible details fixed in adjustable stiffness holder. JVE International Ltd. Vibroengineering Procedia. Vol. 3, 2014.
- 6. Kaliński K. J., Galewski M. A.: A modified method of vibration surveillance by using the optimal control at energy performance index. Mechanical Systems and Signal Processing 2015, 58-59, 41-42.
- 7. Kaliński K. J., Buchholz C.: *Mechatronic Design of Strongly Nonlinear Systems on a Basis of Three Wheeled Mobile Platform.* Mechanical Systems and Signal Processing 2015, 52-53, 700-721.
- 8. Kaliński K. J., Galewski M. A.: Optimal spindle speed determination for vibration reduction during ball-end milling of flexible details. International Journal of Machine Tools and Manufacture 2015, 92, 19-30.
- 9. Kaliński K. J., Chodnicki M., Kowalska B., Kmita P.: Analysis of crash computation on a basis of principle of linear momentum and kinetic energy. In: Mechatronics: Ideas, challenges, solutions and applications. Editors: Awrejcewicz J., Kaliński K. J., Kaliczyńska M., Szewczyk R. Springer, 2015 (in publishing).
- **10.** Kaliński K. J., Galewski M., Mazur M., Chodnicki M.: Modelling and simulation of a new variable stiffness holder for vibration surveillance system. Acta mechanica et automatica, 2015 (in publishing).
- 11. Kaliński K. J., Mazur M.: Optimal Control at Energy Performance Index of the Mobile Robots Following Dynamically Created Trajectories. Mechatronics 2015 (in publishing).
- **12.** Galewski M. A.: Spectrum-based Modal Parameters Identification with Particle Swarm Optimisation. Mechatronics 2015 (in publishing).

ICM Conference

International Conference MECHATRONICS Ideas for Industrial Applications

MAY 11-13, 2015 – GDAŃSK, POLAND

Organising committee

Project TANGO1/266350/NCBR/2015

Zastosowanie wybranych rozwiązań mechatronicznych do nadzorowania procesu skrawania przedmiotów wielkogabarytowych na wieloosiowych centrach obróbkowych.

Application of chosen mechatronic solutions to surveillance of the cutting process of large size objects on multi-axes machining centres.

* Carousel lathe machine FKD 80/60 Feichter. Energomontaż-Północ Gdynia

MODELLING AND SIMULATION OF A NEW VARIABLE STIFFNESS HOLDER FOR VIBRATION SURVEILLANCE SYSTEM

Vibration reduction in milling

We know many different methods for reduction and surveillance of the chatter vibration, i.e.:

- n Using the cutting edge chamfers
- n Using mechanical dampers
- n Using smart materials
- n Robust optimal control
- n Active structural control
- n Active holder
- n Active damping
- n Cutting with variable spindle speed
- n Matching the spindle speed to the optimal phase shift between subsequent passes of the tool cutting edges
- n Variable spindle speed
- n Raising spindle speed
- n Matching the spindle speed to natural frequency of vibrating system

Optimal spindle speed

Optimal spindle speed

– The speed, at which chatter vibration amplitude approaches minimum

Generalised Liao-Young condition

In case, when only one dominant resonance is observed in the workpiece vibration spectrum

$$\frac{zn_{\alpha}}{60} = \frac{f_{\alpha}}{0,25+k}, \quad k = 0, 1, 2, \dots$$

 $f\alpha$ – determined natural frequency of the workpiece [Hz],

 $n\alpha$ – sought optimal spindle speed [rev/min],

z – number of mill edges

New variable stiffness holder

Cutting process model

Proportional model

Cutting force components depend proportionally on cutting layer thickness, and on variable in time depth of cutting

$$\begin{split} F_{yl1}(t) &= \begin{cases} \mu_{l}k_{dl}a_{l}(t)h_{l}(t), & a_{l}(t) > 0 & \wedge h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 & \vee h_{l}(t) \le 0, \end{cases} \\ F_{yl2}(t) &= \begin{cases} k_{dl}a_{l}(t)h_{l}(t), & a_{l}(t) > 0 & \wedge h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 & \vee h_{l}(t) \le 0, \end{cases} \\ F_{yl3}(t) &= 0 \end{split}$$

where:

$$a_{l}(t) = a_{pl}(t) - \Delta a_{pl}(t)$$

$$h_{l}(t) = h_{Dl}(t) - \Delta h_{l}(t) + h_{l}(t - \tau_{l})$$

Holder, workpiece and tool system model

FACULTY OF MECHANICAL ENGINEERING

FACULTY OF MECHANICAL ENGINEERING

Natural frequencies of two first modes of variable stiffness holder with workpiece

Both natural frequencies change due to adjustment of the spring stiffness. It was also noticed that both normal modes of the holder with the workpiece are well coupled with the workpiece

Spring stiffness	1 st natural frequency	2 nd natural frequency	
	[Hz]	[Hz]	
14800	138.62	468.67	
11000	131.36	427.48	
8500	124.08	398.47	
6800	117.16	377.87	
5600	110.78	362.93	
4700	104.83	351.54	
4000	99.27	342.60	
3470	94.36	335.80	
3050	89.94	330.39	
2670	85.43	325.50	

First normal mode (110.78 Hz) of the stiffness holder with the workpiece at spring stiffness 5600 N/mm Second normal mode (362.93 Hz) of the stiffness holder with the workpiece at spring stiffness 5600 N/mm

Standard deviation of displacements [mm]. Expected optimal pairs marked with gray background.

Spindle speed	Holder spring stiffness [N/mm]						
[rev/min]	14800	11000	8500	6800	5600	4700	4000
17651	0.002366						
16745		0.007657					
16651	0.002539	0.005380					
15869			0.002711				
15745	0.003676	0.002613	0.002671	0.002523	0.002193		
15651	0.003866						
15284					0.002547		
15047				0.002860			
14869		0.004322	0.002926	0.002787	0.002927		
14745		0.004957					
14581						0.002810	
14284					0.003170		
14047			0.006864	0.003431	0.003163		
13869			0.008736				
13784					0.003831		
13581						0.003441	
13284				0.008378	0.004034	0.004537	0.003627
13047				0.010622			
12581					0.015531	0.020466	0.031396
12284					0.024176		
11932						0.059660	0.059596
11581						0.078220	

Amplitude of the 1st natural frequency [mm]. Expected optimal pairs marked with gray background. Obtained optimal pairs in bold.

Spindle speed	Holder spring stiffness [N/mm]						
[rev/min]	14800	11000	8500	6800	5600	4700	4000
17651	0.001584						
16745		0.007286					
16651	0.000310	0.004502					
15869			0.001615				
15745	0.001045	0.000317	0.001557	0.001632	0.000666		
15651	0.001282						
15284					0.000942		
15047				0.001510			
14869		0.002834	0.000472	0.000848	0.001501		
14745		0.003316					
14581						0.001212	
14284					0.001103		
14047			0.004760	0.000747	0.005021		
13869			0.006904				
13784					0.001447		
13581						0.000357	
13284				0.006728	0.000521	0.002755	0.002057
13047				0.008114			
12581					0.005560	0.021472	0.033184
12284					0.029790		
11932						0.074891	0.073382
11581						0.082545	

Displacement (a) and its spectrum (b) for optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **11000 N/mm**.

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=14745 rev/min** and holder stiffness **11000 N/mm**

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=16745 rev/min** and holder stiffness **11000 N/mm**

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **8500 N/mm**.

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **14800 N/mm**

Conclusion

Nodifying the holder-workpiece system dynamic properties is possible with the use of ne proposed new workpiece holder

- However the range of modification is limited
- Confirmed by preliminary modal experiments on holder prototype

Simulations for different pairs of holder stiffness and spindle speed show that only in ase of a proper, optimal combination of these two parameters, vibrations are the owest

Proposed variable stiffness holder has a potential to overcome the problem of limited et of optimal spindle speeds calculated from Liao-Young condition

Arbitrary given spindle speed may be optimal after holder stiffness adjustment

IMAL CONTROL AT ENERGY PERFORMANCE DEX OF THE MOBILE ROBOTS FOLLOWING DYNAMICALLY CREATED TRAJECTORIES

Introduction

Examples of application:

Introduction

hat's motion control is also called as low level control and is

Introduction

- ple methods of movement control:
- egulators limited accuracy and efficiency
- ial neural networks ability of loosing stability – accuracy depends on the teaching process
- **logic** based on the uncertain calculation model
- **ic algorithms** time consuming and uncertain model
- **t control** too high torques leading to slippages
- **ive control** system should be appropriately excited what could limit accuracy

Deterministic model

presented control method is based on the deterministic model ng following features:

- ameters of the calculation model are known
- figuration of the calculation model is known as well
- trolled system is bounded by non-holonomic constraints
- ion trajectory is known

2-wheeled mobile robot

Kinematics

imptions:

- obot moves over flat horizontal surface
- otion without slippages
- heels and other robot's parts are perfectly rigid
- vo independent velocities are known

ations of forward kinematics:

$$v_{A} = \frac{\left(\dot{\alpha}_{1} + \dot{\alpha}_{2}\right)r}{2},$$
$$\dot{\beta} = \frac{\left(\dot{\alpha}_{1} - \dot{\alpha}_{2}\right)r}{2l_{1}},$$

Dynamics

pell-Gibbs equations:

$$\frac{\partial S}{\partial \dot{\mathbf{w}}} = \mathbf{f}(t, \dot{\mathbf{q}}, \mathbf{q}) + \mathbf{B}_u(t, \dot{\mathbf{q}}, \mathbf{q})\mathbf{u}$$

$$\dot{\mathbf{q}} = \mathbf{C}_0^T(\mathbf{q})\mathbf{w} + \mathbf{G}_0(\mathbf{q})$$

the Appell's function, computed similarly as kinetic energy, but instead of generalised velocities the generalised accelerations are considered

nergy Performance Index

$$J(t) = \frac{1}{2} (\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}})^T \mathbf{Q} \mathbf{M} (\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}}) + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u}$$

Optimal control signal – time-instant values are computed on-line :

$$\mathbf{u} = -(\mathbf{R} + \mathbf{R}^T)^{-1} \int_{t}^{t+\Delta t} \mathbf{B}^T(\tau) \mathbf{\Phi}^T(t,\tau) d\tau \cdot \mathbf{T}^T (\mathbf{M}^T \mathbf{Q}^T + \mathbf{Q} \mathbf{M}) (\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}})$$

- **R** matrix of control command effect
- ${\bf Q}\,$ matrix of dimensionless weighing coefficients

2-wheeled mobile robot

nulation – static trajectory

imulation – map building

RGB-D vision system simulated in Gazebo

ation with ROS 2D ation Stack. Map ng with SLAM em solving tool –

Experiments

Experiments

Experiments

o-wheeled mobile robot is an example of strongly nonlinear system, ich is restricted by non-holonomic constraints.

rvigation and motion control of such systems is not trivial and can lead great requirements that in practice are not always meet. Thus motion ntrol method must be reliable and stable, even if the controlled system under both external and internal disturbance.

e proposed method was effective solution to the problem of motion ntrol during all performed simulations and experiments. With the use the proposed method the overall reliability of an autonomous or semitonomous mobile robot system can be improved in significance.

SPECTRUM-BASED MODAL PARAMETERS IDENTIFICATION WITH PARTICLE SWARM OPTIMISATION

Modal parameters

Modal test \rightarrow impact test \rightarrow free vibration Free vibrations consist of many, exponentialy damped sine waves

$$y(t) = \sum_{m=1}^{nm} Y_{0m} e^{-2\pi f_m \xi_m t} \sin\left(2\pi f_m \sqrt{1 - \xi_m^2} t\right) = \sum_{m=1}^{nm} Y_{0m} e^{-\beta_m t} \sin\left(\omega_m \sqrt{1 - \left(\frac{\beta_m}{\omega_m}\right)^2} t\right)$$

where:

 ξ_m

- Y_{0m} initial amplitude of vibration mode *m*,
 - dimensionless damping coefficient of mode *m*,
 - natural frequency of mode *m*,
- $f_m natur t time,$
- *nm* number of modes.

entification - optimisation

entification

- Search for unknown parameters: f_m , ξ_m
- and additionally: Y_{0m} dependent on initial conditions
- ay be treated as optimization problem
- Find f_m, ξ_m, Y_{0m} that minimizes some fitnes function

rticle Swarm Optimisation – PSO

- Artificial Intelligence evolutionary computational technique (R. C. Kennedy and J. Eberhart in 1995)
- Solves a problem by moving a number of possible solutions ("particles") over the search space
 - Each particle has:
 - its own "memory" of the current and best solutions found so far

rticle Swarm Optimisation

Standard algorithm

- Arbitrary select ω , φ_p and φ_g parameters
- For each particle *i*:
- initialise position \mathbf{x}_i (uniformly distributed random vector of size *d*),
- initialise particle velocities \mathbf{v}_i for each \mathbf{x}_i vector element,
- remember current particle position as the best known particle position $\mathbf{p}_i = \mathbf{x}_i$.
- Find the particle with the best value of <u>fitness function</u> $f(x_i)$ and remember its position as the best known global position $g=x_i$.
- For each particle *i*, repeat until the stop criterion is met:
- for each dimension d of \mathbf{x}_i generate random numbers $r_{p,d}$ and $r_{g,d}$ $(\in <0;1>$, uniform distribution),
- update particle's velocity:

 $v_{i,d} = \omega v_{i,d} + \varphi_p r_{p,d} (p_{i,d} - x_{i,d}) + \varphi_g r_{g,d} (g_d - x_{i,d}),$

- update particle's position:

 $\mathbf{x}_i = \mathbf{x}_i + \mathbf{v}_i,$

- if $f(\mathbf{x}_i)$ has a better value than $f(\mathbf{p}_i)$ update the best particle position $\mathbf{p}_i = \mathbf{x}_i$

nitial idea

- Search for modal parameters of all modes at once using PSO
 - One particle contains information about all of the modes
 - Problem
 - Usually only dominant mode was estimated properly
 - » Other modes "overshadowed" by the dominant one
 - Slow algorithm convergence for other modes
 - Problem reasons
 - Estimating many modes is a multiobjective problem
 - PSO is not well suited for multiobjective problems
 - . . .

1st STAGE

initialisation of particles for one mode (pts 1...3 of the basic PSO)

Each particle consists of parameters that allow idetification of one mode only - each mode is identified independently

 $f_m \in <0; f_s/2>$, random

where f_s is sampling frequency of vibration measurement signal A

 $\xi_m \in <0.0001; 0.95>$, random

 $Y_{0m} \in <0; 2*Y_{max}>$, random

where: Y_{max} is a maximum value of measured impact test signal

initial velocities, random

but do not exceed 2% of a parameter values' range

One mode identification using PSO algorithm (PSO pt. 4)

- Modified parameters: Y_{0m}, f_m, ξ_m
- Fitness function:

$$f(\mathbf{x}_i) = \sum_{n=0}^{n_{fFFT}} (FFT_t(n) - FFT_x(n))^4$$

- At the end of 1st stage:
- f_m is usually identified with little error
- Y_{0m} and ξ_m are rarely correct
- Suplementary particle repositioning
 - Once per 5 iterations, the worst particle (having the highest value of fitness function) is repositioned
 - New parameters are copied from the best particle (having the lowest value of fitness function) and additionally its ξ_m and Y_{0m} are reduced by 50%
 - Y_{0m} corrected to keep the spectrum peak values before and after ξ_m modification at the same level Improving algorithm convergence

 FFT_t - FFT amplitude spectrum of an impact test signal,
- FFT amplitude spectrum of the impulse response
generated for x_i particle,
 n_{fFFT} - number of FFT samples,
n - sample number.

Band-pass filtering ($<0.8 \cdot f_m$; $1.2 \cdot f_m >$) of the measured signal to select one node.

Calculation of the preliminary corrected value of ξ_m :

$$\xi_{mc} = \frac{\log\left(\frac{\left|A_{fmax}\right|}{\left|A_{lmax}\right|}\right)}{2\pi f_m \left(t_{lmax} - t_{fmax}\right)}$$

where:

maximum amplitude of the first sine signal period in the selected time range, maximum amplitude of the last sine signal period in the selected time range,

time of A_{fmax} , time of A_{lmax} .

Spectrum modification

The spectrum of impact test signal is modified by applying stop-band filter with cut-off frequencies set to $\langle 0.8 \cdot f_m; 1.2 \cdot f_m \rangle$. This eliminates already identified modes from further identification

Additionally, during identification of the next mode, the cut-off spectrum fragment is not taken into consideration for the fitness function calculation

dentification of the next mode

Point 1-5 repeated for each mode independently

2nd STAGE

nitialisation of particles for the 2nd stage of identification

- Each particle consists of parameters for all of the modes
- 1st particle combined from best solutions obtained in pt. 2 (unmodified solutions), velocities set to 0
- 2nd particle combined from best solutions obtained in pt. 2, but $\xi_m = \xi_{mc}$ (estimated in pt. 3), velocities set to 0
- other particles are initialised in a standard way, but in a narrower range:
- $f_m \in \pm 25\%$ of f_m estimated in pt. 2
- $\xi_m \in \pm 25\%$ of ξ_{mc} estimated in pt. 3
- $Y_{0m} \in \pm 25\%$ of Y_{0m} estimated in pt. 2
- 2nd stage of the identification using PSO algorithm (PSO pt. 4)
 - Identification of all modes using PSO algorithm
 - All modes are used for signal and FFT_{r} calculation

Example 1A

Simulated data

- 2 modes: 200 and 350 Hz

1.2	Mode number m	1	2		
1.0	Y _{0m}				
	- reference	1.000	0.300		
	- identified	0.993	0.287		
0.2	error	0.71%	4.33%		
	f _m				
-0.2	- reference	200.00	350.00		
-0.4	- identified	200.00	350.09		
-0.6	error	0.00%	0.03%		
-0.8	ξ _m				
-1.0	- reference	0.005000	0.010000		
	- identified	0.005114	0.009664		
time [s]	error	2.27%	3.36%		
Generated signal					

Average results from 20 runs

Algorithms properly estimated medal perspectators

Example 1B

Simulated data

 $-2 \mod (as in 1A) + gausian noise$

d mode std. dev. σ_{m2} = 0.0320

Example 1B

Results comparison

e number <i>m</i>	1	2
erence	1.000	0.300
PSO	0.983 (1.71%)	0.272 (9.23%)
erence	200.00	350.00
A	199,75 (0.13%)	350,53 (0.15%)
SCF(d)	200,02 (0.01%)	
)	194,59 (2.71%)	
ny	199,95 (0.03%)	350,01 (0.00%)
PSO	200.00 (0.00%)	350.22 (0.06%)
erence	0.005000	0.010000
A	0.002342 (53.2%)	0.016943 (69.4%)
SCF(d)	0.003631 (27.4%)	
)	0.007303 (46.1%)	
ny	0,004981 (0.38%)	0,013343 (33.4%)
PSO	0.005102 (2.04%)	0.008999 (10.0%)

For miPSO - average results from 20 runs

Conclusion

- roposed 2-stage algorithm allowed achieving:
 - > proper identification results in multi-objective problem
 - Identification results compaprable or better than for other methods, especialy in case of noisy signal
- niPSO algorithm may by successfully utilised for simple modal identification asks
- rawbacks and limitations
 - At current stage suitable only for SISO objects with clearly separated modes (due to the need of pass/stop-band filtering)

