

XVII Warsztaty Projektowania Mechatronicznego Kraków, 01 – 02 czerwca 2017

TECHNIKA WIRTUALNEGO PROTOTYPOWANIA WSPOMAGANEGO EKSPERYMENTEM W ZASTOSOWANIU DO POSZUKIWANIA OPTYMALNEJ PRĘDKOŚCI OBROTOWEJ PODCZAS FREZOWANIA PRZEDMIOTÓW WIELKOGABARYTOWYCH

> Krzysztof J. KALIŃSKI, Marek GALEWSKI, Michał MAZUR, Natalia MORAWSKA

WYDZIAŁ MECHANICZNY

Przykłady systemów obróbki wielkogabarytowej

Obrabiarki w EPG w Gdyni

we karuzelowe centrum tokarsko

5-osiowe płytowe centrum frezarsko-

Przykłady systemów obróbki wielkogabarytowej

GAFAKO Gdynia

IN-BUL Sierakowice

Przykłady systemów obróbki wielkogabarytowej

n Obróbki Elementów Wielkogabarytowych (COEW), P.H.S. HYDROTOR S.A.:

Aktualne badania

Realizacja PROJEKTU TANGO1/266350/NCBR/2015

stosowanie wybranych rozwiązań mechatronicznych lo nadzorowania procesu skrawania przedmiotów wielkogabarytowych na wieloosiowych centrach obróbkowych"

Metody redukcji drgań

zane z oddziaływaniem poprzez prędkość obrotową

- iększanie prędkości skrawania
- gulacja prędkości obrotowej wrzeciona z dopasowaniem do stotliwości drgań własnych układu
- pasowanie prędkości obrotowej wrzeciona do optymalnego a przesunięcia fazowego w kolejnych przejściach narzędzia 🔫
- rowanie pulsacją prędkości obrotowej wrzeciona
- rowanie optymalne prędkością obrotową wrzeciona
- rowanie programowe prędkością obrotową wrzeciona

Rezultaty

Optymalna prędkość obrotowa wrzeciona

kreślenie optymalnej prędkości obrotowej zeciona

- Prędkość optymalna prędkość, przy której poziom drgań przedmiotu obrabianego jest najmniejszy
- a częstotliwość i amplitudę drgań mają wpływ łasności dynamiczne przedmiotu obrabianego
- W różnych obszarach przedmiotu mogą dominować inne postacie drgań
- Konieczne jest określenie "mapy" opisującej prędkość optymalną dla każdego punktu przedmiotu

Optymalna prędkość obrotowa wrzeciona

ożenie. W widmie amplitudowym drgań przedmiotu występuje jedna dominująca częstotliwość drgań własnych

inimalizacja pracy sił skrawania na kierunku grubości warstwy rawanej – kryterium **uogólnione** (warunek *Liao-Younga* 1996)

$$\frac{zn_o}{60} = \frac{f_\alpha}{0,25+k}, \quad k = 0, 1, 2, \dots$$

- częstotliwość drgań własnych przedmiotu obrabianego [Hz],
- poszukiwana prędkość obrotowa wrzeciona [obr/min],
- liczba ostrzy narzędzia

rzypadku obróbki przedmiotów wielkogabarytowych jest to jedynie pierwsze

Techniki projektowania mechatronicznego

Jzasadnienie: podstawowa mapa optymalnych prędkości obrotowych nie spełnia wymagań

I. Wirtualne Prototypowanie (WP)

2. Wirtualne Prototypowanie Wspomagane Eksperymentem (WPWE)

3. Realizacja w Systemie Docelowym (RSD)

Wyznaczanie Parametrów Podukładu Modalnego

Wirtualne Prototypowanie Wspomagane Eksperymentem

stawa analizy.

na **symulowanych** drgań przedmiotu obrabianego na podstawie:

artości RMS przemieszczeń w dziedzinie czasu

vartości dominujących "szczytów" w widmie amplitudowym

Potwierdzenie skuteczności nadzorowania drgań narzędzie-przedmiot obrabiany w procesie obróbki przedmiotów testowych dla danych ocesowych, z wykorzystaniem optymalnej prędkości obrotowej wrzeciona oraz techniki WPWE.

Przykład. Przedmiot testowy 440424 PHS HYDROTOR w Tucholi

Przykład. Przedmiot testowy 440424 PHS HYDROTOR w Tucholi

Przykład. Przedmiot testowy 440424 PHS HYDROTOR w Tucholi

Macierz współczynników MAC

0.92 0.15 0.05 0.11 0.01 0.18 **0.82** 0.55 0.19 0.01 0.89 0.25 0.03 0.12 0.00 0.04 0.48 **0.94** 0.03 0.04 0.08 0.02 0.02 0.05 0.10 0.09 0.17 0.02 0.09 0.31 0.04 0.09 0.03 **0.71** 0.04 0.02 0.04 0.01 0.00 **0.78** 0.01 0.03 0.19 0.01 0.05 0.00 0.16 0.12 0.11 0.78

Ocena zgodności częstotliwości drgań własnych

p-LSCFD	170.241	239.520	-	275.575	-	-	569.708	663.311	-	-
Model										
bliczeniowy										

Przykład. Przedmiot testowy 440424 PHS HYDROTOR w Tucholi

Współczynniki sztywności podpór: 1-3 [N/mm], 4-6 [N mm]. Obróbka zgrubna

000034e+02	5.000000e+03	7.528649e+06	1.744320e+01	1.000000e+15
178769e+01				
920973e+03	2.196940e+04	7.528471e+02	3.541750e+07	1.000000e+15
000000e+00				
000000e+02	1.000011e+02	4.927371e+12	9.264866e+12	1.000000e+15
125230e+02				
000000e+03	1.070753e+03	7.376069e+04	1.000000e+15	2.904504e+00
877757e+06				
481396e+05	1.000060e+02	1.707697e+03	5.679903e+00	1.689365e+01
103207e+02				
619753e+04	1.000000e+02	4.801193e+05	3.632388e+02	1.074730e+00
241680e+01				
553519e+04	2.779294e+04	5.000002e+03	2.881110e+00	1.000000e+15
902199e+02				
209205e+04	2.879607e+03	1.000000e+13	1.000000e+00	1.000000e+15
465223e+08				
729838e+05	1.000028e+02	1.000000e+13	1.000000e+15	8.928773e+05
408583e+01				
414657e+05	7.305679e+02	1.574313e+05	1.000000e+15	1.625843e+01
784706e+00				
000000e+02	8.267031e+02	1.000000e+04	2.575624e+01	3.064148e+00

Przykład. Przedmiot testowy 440424 PHS HYDROTOR w Tucholi

Współczynniki sztywności podpór: 1-3 [N/mm], 4-6 [N mm]. Obróbka dokładna

```
0.0.0.0.
   0. 0.
1
  0. 0. 0. 0. 0. 0.
2
  0. 0. 0. 0. 0. 0.
3
  0.0.0.0.0.0.
4
  0.0.0.0.0.0.
5
  0. 0. 0. 0. 0. 0.
6
        0.0.0.0.
  0. 0.
7
   1.0e+04 1.0e+04 1.000000e+08 0. 0. 0.
8
   0. 0. 0. 0. 0. 0.
9
10
   0. 0. 0. 0. 0. 0.
   1.0e+04 1.0e+04 1.000000e+08 0. 0. 0.
11
12
   1.0e+04 1.0e+04 1.000000e+08 0. 0. 0.
```


zowanie czołowe prowadnicy 2.

gania względne w umownym punkcie styku narzędzia z przedmiotem S kierunku normalnym do powierzchni obrabianej. **Obróbka zgrubna**

spół narzędziowy T13, głowica frezowa SECO Z6 *φ*63 zba ostrzy głowicy frezowej z = 6 ednica podziałowa głowicy D= 63 mm ędkość obrotowa n = 1112 obr/min ędkość posuwu v_f = 1112 m/min ugość prowadnicy l_d = 956 mm

> **Problem:** Poszukiwanie optymalnej prędkości obrotowej wrzeciona dla zidentyfikowanych współczynników sztywności zamocowania przedmiotu obrabianego

Głębokość skrawania a_p = **2,25** mm

/f[mm/min]	f[Hz]	t[min]	t[s]	tp[s]	f ₁ [Hz]		f ₂ [Hz]		f ₃ [Hz]		f ₄ [Hz]		f ₅ [Hz]	
1112	111,200	0,86	52	10	111,0975	7,71E-05	222,1951	4,34E-05						
900	90,000	1,06	64	10	90,3431	7,77E-05	180,6861	4,00E-05						
920	92,000	1,04	62	10	91,5639	5,60E-05	184,3487	4,02E-05	275,9126	1,78E-04				
940	94,000	1,02	61	10	94,0056	7,51E-05	188,0112	3,85E-05						
960	96,000	1,00	60	10	95,2265	6,00E-05	191,6738	4,03E-05						
980	98,000	0,98	59	10	97,6682	7,72E-05	195,3363	4,39E-05	390,6727	2,52E-04				
1000	100,000	0,96	57	10	100,1099	5,76E-05	198,9989	4,26E-05						
1020	102,000	0,94	56	10	101,3307	6,84E-05	203,8823	3,31E-05						
1040	104,000	0,92	55	10	103,7724	7,77E-05	207,5449	4,54E-05						
1060	106,000	0,90	54	10	106,2141	7,73E-05	212,4283	4,43E-05						
1080	108,000	0,89	53	10	108,6558	7,50E-05	217,3117	4,02E-05	325,9675	7,61E-06	433,4025	7,69E-06	542,0584	6,57E-05
1100	110,000	0,87	52	10	111,0975	7,68E-05	222,1951	4,22E-05						
1120	112,000	0,85	51	10	111,0975	7,78E-05	222,1951	4,43E-05						
1140	114,000	0,84	50	10	113,5393	8,25E-05								
1160	116,000	0,82	49	10	115,981	7,99E-05	231,9619	4,47E-05						
1180	118,000	0,81	49	10	119,6435	5,54E-05	238,0662	6,58E-05	357,7097	8,58E-06				
1200	120,000	0,80	48	10	119,6435	5,69E-05	235,6245	8,32E-05	356,4888	8,69E-06				

Głębokość skrawania a_p = **2,25** mm

Głębokość skrawania a_p = **0,2** mm

vf[mm/min]	f[Hz]	tp[s]	f₁[Hz]		f ₂ [Hz]		f ₃ [Hz]		f ₄ [Hz]		f ₅ [Hz]	
1112	111,200	10	111,0975	6,95E-06	222,1951	3,94E-06	776,462	3,24E-06				
920	92,000	10	91,5639	5,03E-06	184,3487	3,60E-06	275,9126	1,72E-05				
960	96,000	10	95,2265	5,39E-06	191,6738	3,62E-06						
1000	100,000	10	100,1099	5,18E-06	198,9989	3,83E-06						
1040	104,000	10	103,7724	6,99E-06	207,5449	4,10E-06						
1080	108,000	10	108,6558	6,75E-06	217,3117	3,64E-06	325,9675	6,80E-07	433,4025	6,86E-07	542,0584	6,27E-06
1120	112,000	10	111,0975	7,01E-06	222,1951	4,02E-06						
1160	116,000	10	115,981	7,23E-06	231,9619	4,08E-06						
1200	120,000	10	119,6435	5,16E-06	235,6245	8,03E-06						

Głębokość skrawania a_p = **0,2** mm

zowanie czołowe prowadnicy 2.

gania względne w umownym punkcie styku narzędzia z przedmiotem S kierunku normalnym do powierzchni obrabianej. **Obróbka dokładna**

```
spół narzędziowy T13, głowica frezowa Sandvik Z5 ф63
ębokość skrawania a<sub>p</sub> = 0,03 mm
zba ostrzy głowicy frezowej z = 5
ednica podziałowa głowicy D= 63 mm
ędkość obrotowa n = 1112 obr/min
ędkość posuwu v<sub>f</sub> = 1112 m/min
ugość prowadnicy l<sub>d</sub> = 956 mm
```

Problem: Poszukiwanie optymalnej prędkości obrotowej wrzeciona dla zidentyfikowanych współczynników sztywności zamocowania przedmiotu obrabianego

n]	vf[mm/min]	f[Hz]	tp[s]	f ₁ [Hz]		f ₂ [Hz]		f ₃ [Hz]		f ₄ [Hz]		f ₅ [Hz]	
11	240	92,583	20	92,7848	8,19E-06	184,3487	1,50E-05	369,9182	6,10E-06				
)0	194	75,000	25	75,6928	1,44E-05	150,1648	3,97E-06					603,101	2,51E-06
20	199	76,667	10	75,6928	3,42E-06	150,1648	8,02E-06					677,5729	1,90E-05
10	203	78,333	25	78,1345	2,11E-06	153,8274	2,70E-06			387,0101	1,51E-05		
60	207	80,000	25	81,7971	6,16E-06	162,3733	3,27E-06	325,9675	1,19E-06	394,3352	2,79E-06	568,9171	2,56E-06
30	212	81,667	25	81,7971	6,49E-06	162,3733	3,93E-06	325,9675	1,28E-06				
)0	216	83,333	25	84,2388	6,35E-06	169,6984	4,71E-06	339,3969	1,72E-06			763,0326	1,84E-06
20	220	85,000	25	84,2388	6,43E-06	169,6984	5,47E-06	339,3969	1,89E-06			593,3341	6,27E-06
10	225	86,667	25	87,9014	6,40E-06	177,0236	6,53E-06	354,0471	2,37E-06			706,8734	3,53E-06
60	229	88,333	25	87,9014	6,43E-06	177,0236	7,82E-06	354,0471	2,73E-06				
30	233	90,000	25	87,9014	6,53E-06	177,0236	1,01E-05	354,0471	3,34E-06				
)0	238	91,667	25	92,7848	7,86E-06	184,3487	1,12E-05	369,9182	4,87E-06	554,2669	1,93E-06		
20	242	93,333	10	92,7848	8,72E-06	184,3487	2,10E-05	369,9182	7,99E-06	554,2669	7,10E-06		
10	246	95,000	10	94,0056	6,94E-06	189,2321	2,75E-04						
60	251	96,667	20	96,4473	8,07E-06	194,1155	1,78E-05	387,0101	8,13E-05				
30	255	98,333	20	96,4473	8,12E-06	194,1155	8,70E-06	387,0101	1,52E-05	581,1256	2,78E-06		
)0	259	100,000	20	101,3307	8,46E-06	203,8823	4,96E-06	406,5438	7,15E-06				

in]	vf[mm/min]	f[Hz]	tp[s]	f ₁ [Hz]		f ₂ [Hz]		f ₃ [Hz]		f ₄ [Hz]	
11	240	92,583	230	84,2388	2,40E-05	169,6984	2,38E-05				
00	194	75,000	275	63,4843	3,65E-05	126,9686	6,90E-05			507,8745	5,31E-06
20	199	76,667	275			126,9686	3,11E-04				
40	203	78,333	275	63,4843	2,58E-05	126,9686	1,19E-04				
60	207	80,000	275	63,4843	2,81E-05	126,9686	4,73E-05	190,4529	3,92E-06		
80	212	81,667	250	84,2388	1,92E-05	169,6984	2,11E-05	253,9372	3,03E-06		
00	216	83,333	250	84,2388	2,07E-05	169,6984	2,54E-05	253,9372	2,59E-06	593,3341	1,53E-06
20	220	85,000	250	84,2388	2,16E-05	169,6984	8,57E-06			593,3341	1,60E-05
40	225	86,667	250	84,2388	2,34E-05	169,6984	4,51E-06	253,9372	2,40E-06	593,3341	2,74E-06
60	229	88,333	250	84,2388	2,49E-05	181,907	1,49E-05	253,9372	2,23E-06	507,8745	2,30E-06
80	233	90,000	220	84,2388	2,05E-05	169,6984	6,62E-06	253,9372	1,91E-06		
00	238	91,667	225	84,2388	2,28E-05	169,6984	1,50E-05	253,9372	1,87E-06		
20	242	93,333	225	84,2388	2,37E-05	169,6984	3,91E-05				
40	246	95,000	225	84,2388	2,40E-05	169,6984	5,04E-04				
60	251	96,667	220	84,2388	2,53E-05	169,6984	4,44E-05	339,3969	1,52E-05		
80	255	98,333	220	84,2388	2,68E-05	169,6984	2,57E-05			507,8745	6,62E-06
00	259	100,000	220	84,2388	2,81E-05	169,6984	1,89E-05	507,8745	1,71E-05		

Perspektywy zastosowań przemysłowych

Uproszczona procedura B+R

Opis czynności	Czas realizacji	Uwagi
a modalne przedmiotu abiarce, ograniczone vierzchni obrabianych. at: parametry modelu nego $\Omega_m Z_m \Psi_m$	ok. 1 h ok. 0,5 h. po automatyzacji	Eliminacja elementów czasochłonnych: - tworzenie modelu MES podukładu modalnego, - ocena zgodności (walidacja)
acja niestacjonarnego u hybrydowego procesu cowego at: optymalna prędkość wa wrzeciona	ok. 62" (<i>generic</i> – wersja uniwersalna) ok. 50" (<i>native</i>)	Oprogramowanie autorskie: - MSYS2 MinGW 64-bit (Fortran) - MATLAB R2015a
RAZEM:	ok. 50' 40" (generic)	20 symulacji

Perspektywy zastosowań przemysłowych

Badania klasyczne ("pracą")

Czas obróbki: 60"

Czas ustawienia prędkości obrotowej n i prędkości posuwu v_f : 180" Lączny czas zabiegu obróbkowego: 240"

iczba realizacji: 20

ączny czas badań: 1 h 20', 2 -krotnie dłuższy

Ponadto, badania "pracą" wymagają poniesienia kosztów zużytego przedmiotu obrabianego !!!