

# OPERATIONAL MODAL ANALYSIS OF THE LARGE STRUCTURE WORKPIECES

Michał MAZUR, Marek A. Galewski, Krzysztof J. KALIŃSKI





FACULTY OF MECHANICAL ENGINEERING



The National Centre for Research and Development



FACULTY OF MECHANICAL ENGINEERING

#### Machining of large workpieces











## Research grant TANGO1/266350/NCBR/2015

" Application of chosen mechatronic solutions to surveillance of the high-dimensional workpieces cutting process on multi axial machining centres 2015-2018"





## The workpiece



FACULTY OF MECHANICAL ENGINEERING







FACULTY OF MECHANICAL ENGINEERING

## Experimental Modal Analysis



Two methods were used: **ERA** – Eigenvalue Realisation Algorithm **p-LSCFD** – polyreference-Least Squares Complex Frequency Domain





## Experimental Modal Analysis



#### FACULTY OF MECHANICAL ENGINEERING





## Experimental Modal Analysis - verification



FACULTY OF MECHANICAL ENGINEERING











### 249078 finite elements of the Tet10 type



#### Free-free normal modes



FACULTY OF MECHANICAL ENGINEERING





## Supports components



FACULTY OF MECHANICAL ENGINEERING



#### Modified PSO algorithm was used to estimate supports stiffness factors







FACULTY OF MECHANICAL ENGINEERING

| 0,97 | 0,02 | 0,04 | 0,02 | 0,09 | 0    | 0,11 |
|------|------|------|------|------|------|------|
| 0,04 | 0,95 | 0,11 | 0    | 0    | 0,01 | 0,03 |
| 0,07 | 0,07 | 0,95 | 0,02 | 0,02 | 0    | 0,01 |
| 0,25 | 0,01 | 0    | 0,04 | 0,04 | 0    | 0,02 |
| 0,03 | 0,05 | 0,06 | 0,89 | 0,04 | 0,07 | 0,12 |
| 0,16 | 0,06 | 0,03 | 0,01 | 0,18 | 0,03 | 0    |
| 0,07 | 0,04 | 0    | 0,07 | 0,89 | 0,03 | 0,11 |
| 0,01 | 0,02 | 0    | 0,01 | 0,04 | 0,93 | 0,2  |
| 0,13 | 0,01 | 0    | 0,16 | 0,03 | 0,1  | 0,22 |
| 0,01 | 0,08 | 0    | 0,19 | 0,02 | 0,3  | 0,93 |

#### MAC

#### **Natural frequency**

| Identification | 178,2 | 207,9 | 238,2 | -     | 430,1 | -     | 575,7 | 618,6 | -     | 721,3 |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| from           |       |       |       |       |       |       |       |       |       |       |
| measurement    |       |       |       |       |       |       |       |       |       |       |
| Computation    | 179,2 | 207,5 | 237,8 | 271,7 | 429,5 | 430,6 | 567,9 | 616,0 | 705,0 | 723,5 |





Correlation results day 2



FACULTY OF MECHANICAL ENGINEERING

#### MAC

| 0,96 | 0,05 | 0,08 | 0,01 | 0,09 | 0    |
|------|------|------|------|------|------|
| 0,01 | 0,98 | 0,24 | 0    | 0,01 | 0,03 |
| 0,08 | 0,18 | 0,95 | 0,03 | 0,05 | 0,01 |
| 0,2  | 0    | 0    | 0    | 0,03 | 0    |
| 0,13 | 0,08 | 0,03 | 0,01 | 0,18 | 0    |
| 0,08 | 0    | 0    | 0,94 | 0,06 | 0,01 |
| 0,05 | 0,03 | 0,03 | 0,05 | 0,87 | 0,01 |
| 0    | 0,03 | 0    | 0,01 | 0,01 | 0,94 |

#### **Natural frequency**

| Identification<br>from | 185,0 | 211,3 | 242,4 | -     | -     | 435,7 | 585,0 | 631,2 | -     | -     |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| measurement            |       |       |       |       |       |       |       |       |       |       |
| Computation            | 184,6 | 211,4 | 242,2 | 295,5 | 434,3 | 434,4 | 571,5 | 630,2 | 710,5 | 729,5 |

Model may be subject to change due to pretension.





## Correlation results day 2



FACULTY OF MECHANICAL ENGINEERING

#### MAC: measurements and FEM computation





### Machining



## Assumption:

The only one dominant pole exists in spectrum of the milled workpiece.

*Liao-Young* 1996 condition:

$$\frac{zn_o}{60} = \frac{f_\alpha}{0,25+k}, \quad k = 0, 1, 2, \dots$$

 $f_{\alpha}$  – natural frequency of the workpiece [Hz],

- *n*<sub>o</sub> sought spindle angular velocity [rev/min],
- z numer of edges of the tool



## Vibration during the milling process



FACULTY OF MECHANICAL ENGINEERING





The very well refined face milling process

– nearly nothing happens here  $\otimes$ 



Operational data preprocessing and identification



FACULTY OF MECHANICAL ENGINEERING

#### Power Spectral Density function was computed with the Welch method



Modified ERA – harmonics appear at poles with very small damping



#### Correlation



FACULTY OF MECHANICAL ENGINEERING





#### Conclusion



- For well refined machining technology OMA may not be suitable as a main method of identification
- Results from the OMA could be used to track model changes during the process of machining

## Thank you for your attention!



The National Centre for Research and Development