

International Conference MECHATRONICS Ideas for Industrial Applications

GDAŃSK UNIVERSITY

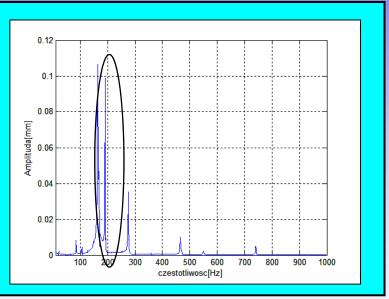
OF TECHNOLOGY

FACULTY OF MECHANICAL ENGINEERING

MODELLING AND SIMULATION OF A NEW VARIABLE STIFFNESS HOLDER FOR VIBRATION SURVEILLANCE SYSTEM

Krzysztof J. KALIŃSKI Marek CHODNICKI Marek GALEWSKI Michał MAZUR

Gdańsk,11-13 May 2015


Vibration during milling

It is obvious that tool-workpiece relative vibration plays principal role during cutting process

Due to existence of certain conditions, it may lead to **a loss of stability** and cause generation of selfexcited *chatter* vibration.

Chatter occurrence produces several negative effects:

- Poor surface quality
- Unacceptable inaccuracy
- Expensive noise
- Disproportionate tool wear
- Machine tool damage
- Reduced material removal rate
- Increased costs in terms of production time
- Waste of material
- Waste of energy

Vibration reduction in milling

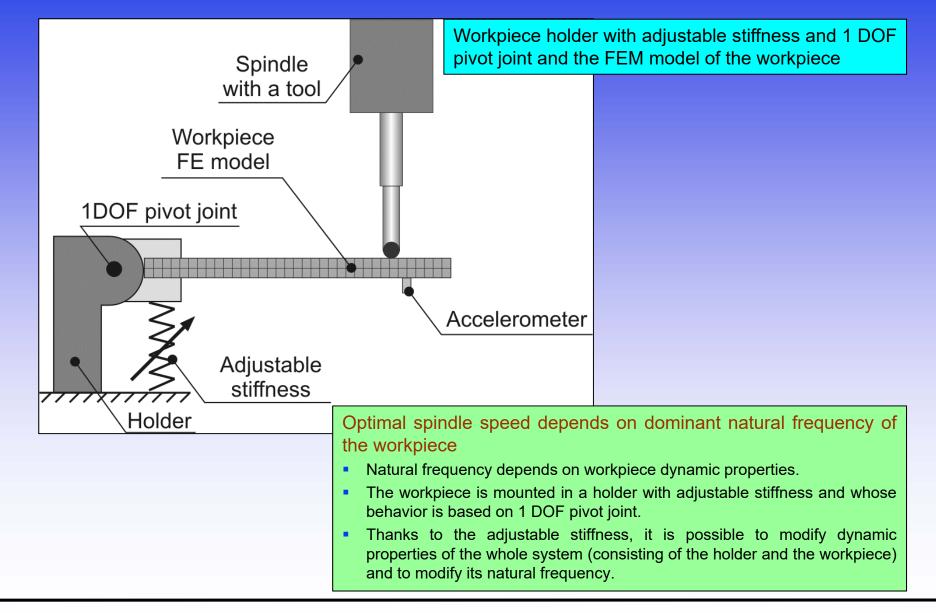
We know many different methods for reduction and surveillance of the chatter vibration, i.e.:

- Using the cutting edge chamfers
- Using mechanical dampers
- Using smart materials
- Robust optimal control
- Active structural control
- Active holder
- Active damping
- Cutting with variable spindle speed
- Matching the spindle speed to the optimal phase shift between subsequent passes of the tool cutting edges
- Variable spindle speed
- Raising spindle speed
- Matching the spindle speed to natural frequency of vibrating system

Optimal spindle speed

Optimal spindle speed

- The speed, at which chatter vibration amplitude approaches minimum


Generalised Liao-Young condition

In case, when only one dominant resonance is observed in the workpiece vibration spectrum

$$\frac{zn_{\alpha}}{60} = \frac{f_{\alpha}}{0,25+k}, \quad k = 0, 1, 2, \dots$$

- determined natural frequency of the workpiece [Hz],
- n_{α} sought optimal spindle speed [rev/min],
- z number of mill edges

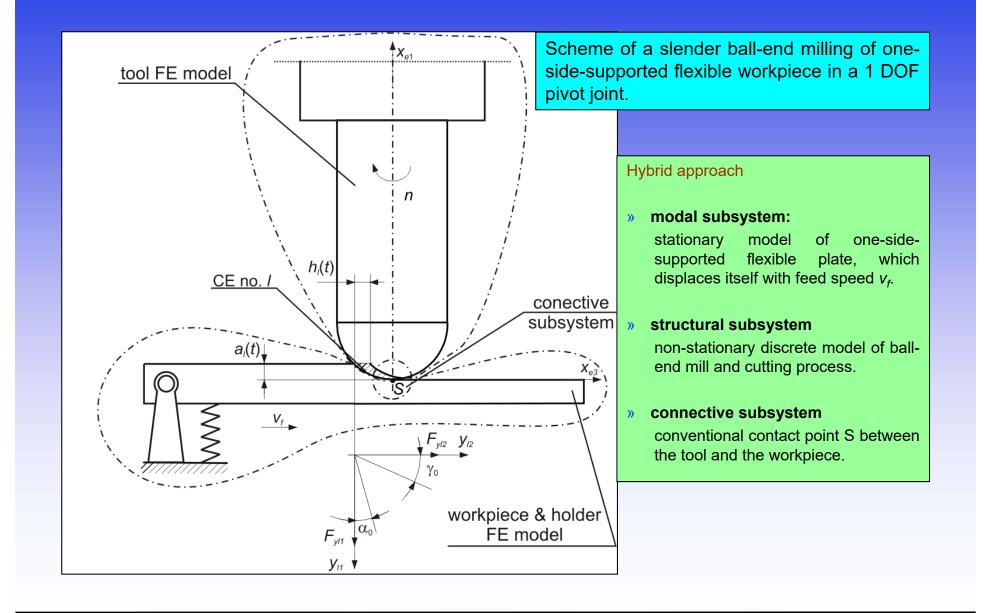
New variable stiffness holder

Cutting process model

Proportional model

Cutting force components depend proportionally on cutting layer thickness, and on variable in time depth of cutting

$$F_{yl1}(t) = \begin{cases} \mu_{l}k_{dl}a_{l}(t)h_{l}(t), & a_{l}(t) > 0 \land h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 \lor h_{l}(t) \le 0, \end{cases}$$


$$F_{yl2}(t) = \begin{cases} k_{dl}a_{l}(t)h_{l}(t), & a_{l}(t) > 0 \land h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 \lor h_{l}(t) \le 0, \end{cases}$$

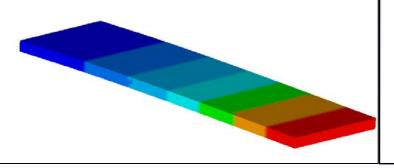
$$F_{yl3}(t) = 0$$

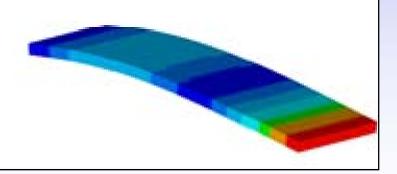
where:

$$a_{l}(t) = a_{pl}(t) - \Delta a_{pl}(t)$$

$$h_{l}(t) = h_{Dl}(t) - \Delta h_{l}(t) + h_{l}(t - \tau_{l})$$

Holder, workpiece and tool system model

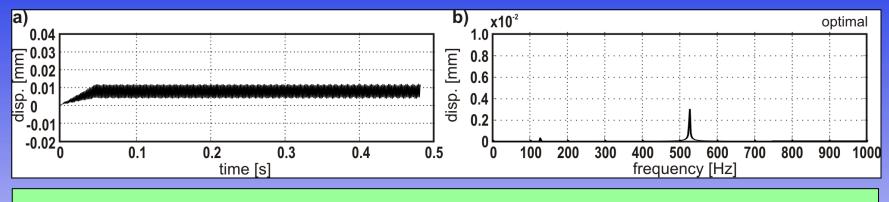

Natural frequencies of two first modes of variable stiffness holder with workpiece


Both natural frequencies change due to adjustment of the spring stiffness. It was also noticed that both normal modes of the holder with the workpiece are well coupled with the workpiece

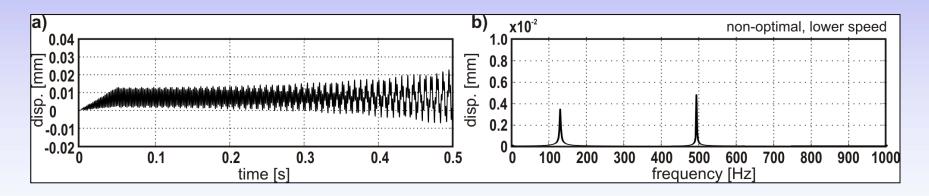
	Spring stiffness [N/mm]	1 st natural frequency	2 nd natural frequency
		[Hz]	[Hz]
	14800	138.62	468.67
	11000	131.36	427.48
	8500	124.08	398.47
	6800	117.16	377.87
	5600	110.78	362.93
	4700	104.83	351.54
	4000	99.27	342.60
	3470	94.36	335.80
	3050	89.94	330.39
	2670	85.43	325.50

First mode (110.78 Hz) of the stiffness holder with workpiece with spring stiffness 5600 N/mm

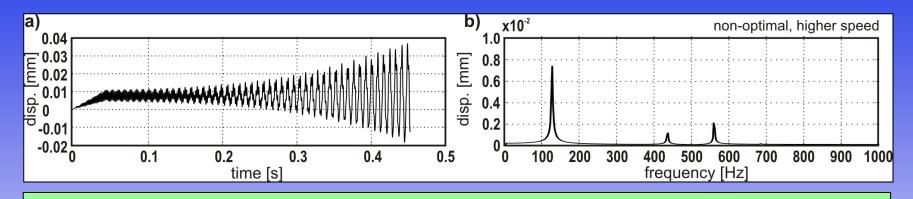
Second mode (362.93 Hz) of the stiffness holder with workpiece with spring stiffness 5600 N/mm

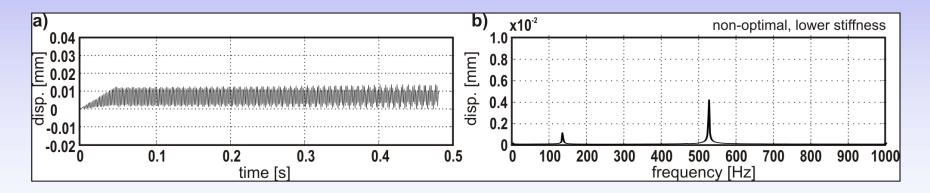


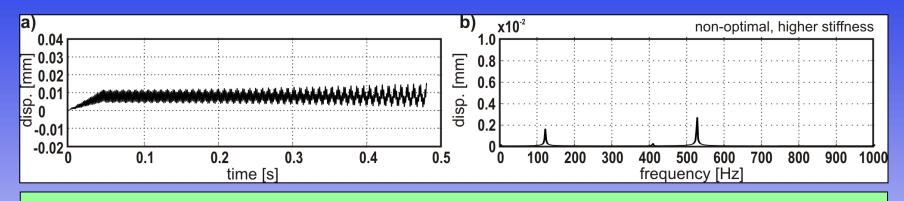
Standard deviation of displacements [mm]. Expected optimal pairs marked with gray background


Spindle speed	Holder spring stiffness [N/mm]						
[rev/min]	14800	11000	8500	6800	5600	4700	4000
17651	0.002366						
16745		0.007657					
16651	0.002539	0.005380					
15869			0.002711				
15745	0.003676	0.002613	0.002671	0.002523	0.002193		
15651	0.003866						
15284					0.002547		
15047				0.002860			
14869		0.004322	0.002926	0.002787	0.002927		
14745		0.004957					
14581						0.002810	
14284					0.003170		
14047			0.006864	0.003431	0.003163		
13869			0.008736				
13784					0.003831		
13581						0.003441	
13284				0.008378	0.004034	0.004537	0.003627
13047				0.010622			
12581					0.015531	0.020466	0.031396
12284					0.024176		
11932						0.059660	0.059596
11581						0.078220	

Amplitude of the 1st mode [mm]. Expected optimal pairs marked with gray background. Obtained optimal pairs in bold.


Spindle speed	Holder spring stiffness [N/mm]						
[rev/min]	14800	11000	8500	6800	5600	4700	4000
17651	0.001584						
16745		0.007286					
16651	0.000310	0.004502					
15869			0.001615				
15745	0.001045	0.000317	0.001557	0.001632	0.000666		
15651	0.001282						
15284					0.000942		
15047				0.001510			
14869		0.002834	0.000472	0.000848	0.001501		
14745		0.003316					
14581						0.001212	
14284					0.001103		
14047			0.004760	0.000747	0.005021		
13869			0.006904				
13784					0.001447		
13581						0.000357	
13284				0.006728	0.000521	0.002755	0.002057
13047				0.008114			
12581					0.005560	0.021472	0.033184
12284					0.029790		
11932						0.074891	0.073382
11581						0.082545	


Displacement (a) and its spectrum (b) for optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **11000 N/mm**.


Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=14745 rev/min** and holder stiffness **11000 N/mm**

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=16745 rev/min** and holder stiffness **11000 N/mm**

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **8500 N/mm**.

Displacement (a) and its spectrum (b) for non-optimal pair of spindle speed **n=15745 rev/min** and holder stiffness **14800 N/mm**

Conculsions

- Modifying the holder-workpiece system dynamic properties is possible with the use of the proposed new workpiece holder
 - However the range of modification is limited
 - Confirmed by preliminary modal experiments on holder prototype
- Simulations for different pairs of holder stiffness and spindle speed show that only in case of a proper, optimal combination of these two parameters, vibrations are the lowest
- Proposed variable stiffness holder has a potential to overcome the problem of limited set of optimal spindle speeds calculated from Liao-Young condition
 - Arbitrary given spindle speed may be optimal after holder stiffness adjustment

Thank you for your attention