SYMPOZJUM NAUKOWO-PRAKTYCZNE URZĄDZENIA I SYSTEMY MECHATRONICZNE Suwałki – Gawrych Ruda 09– 11.06.2016

SYSTEMY MECHATRONICZNE W NADZOROWANIU UKŁADÓW MECHANICZNYCH

Krzysztof J. KALIŃSKI, <u>Marek CHODNICKI</u>, Marek A. GALEWSKI, Michał MAZUR

Zespół Mechatroniki

Gdańsk

Politechnika Gdańska

- około 25000 studentów
- 9 Wydziałów
- 7 kursów doktorskich
- 29 kierunków studiów
- 40 kursów podyplomowych
- 1200 nauczycieli akademickich

Wydział Mechaniczny

Przyszłość

Główne tematy badań

- dzorowanie drgań podczas skrawania tym skrawania przedmiotów wielkogabarytowych wieloosiowych centrach obróbkowych)
- erowanie 2-kołowymi platformami mobilnymi
- stemy nadzorowania z wykorzystaniem sterowania tymalnego przy energetycznym wskaźniku jakości
- entyfikacja parametrów modalnych

Publikacje

dnicki M., Kaliński K. J., Galewski M.: Vibration surveillance during milling of flexible details with a use of active optimal control. Journal of Low Frequency Noise, Vibration and Active Control, Vol. 32, No. 1&2 2013. Iński K. J., Mazur M., Galewski M.: The optimal spindle speed map for reduction of chatter vibration during ing of bow thruster blade. Solid State Phenomena 2013, Vol. 198, s.686-691.

dnicki M., Panasiuk-Chodnicka A.A., Ławreszuk D., Kulwicki Ł., Jażdżewski M.: Innovative Autonomous Verwater Vehicle (AUV) for research of state of environment in hard condition. XXXIII SCAR Biennial tings 2014 Open Science Conference, Auckland.

iński K. J., Galewski M. A.: Vibration Surveillance Supported by Hardware-In-the-Loop Simulation in Milling lexible Workpieces. Mechatronics 2014, 24, 8,1071–1082.

iński K. J., Galewski M., Mazur M., Chodnicki M.: Vibration surveillance for efficient milling of flexible ils fixed in adjustable stiffness holder. JVE International Ltd. Vibroengineering Procedia. Vol. 3, 2014.

iński K. J., Galewski M. A.: A modified method of vibration surveillance by using the optimal control at gy performance index. Mechanical Systems and Signal Processing 2015, 58-59, 41-42.

iński K. J., Buchholz C.: *Mechatronic Design of Strongly Nonlinear Systems on a Basis of Three Wheeled vile Platform.* Mechanical Systems and Signal Processing 2015, 52-53, 700-721.

iński K. J., Galewski M. A.: Optimal spindle speed determination for vibration reduction during ball-end ing of flexible details. International Journal of Machine Tools and Manufacture 2015, 92, 19-30.

iński K. J., Chodnicki M., Kowalska B., Kmita P.: Analysis of crash computation on a basis of principle of ar momentum and kinetic energy. In: Mechatronics: Ideas, challenges, solutions and applications. Editors: ejcewicz J., Kaliński K. J., Kaliczyńska M., Szewczyk R. Springer, 2015 (in publishing).

iński K. J., Galewski M., Mazur M., Chodnicki M.: Modelling and simulation of a new variable stiffness ler for vibration surveillance system. Acta mechanica et automatica, 2015 (in publishing).

iński K. J., Mazur M.: Optimal Control at Energy Performance Index of the Mobile Robots Following

ICM Conference

International Conference

MAY 11-13, 2015 – GDAŃSK, POLAND

Ideas for Industrial Applications

ICM Conference

Projekt - Tango1

ect TANGO1/266350/NCBR/2015

ASTOSOWANIE WYBRANYCH ROZWIĄZAŃ MECHATRONICZNYCH DO NADZOROWANIA PROCESU SKRAWANIA PRZEDMIOTÓW WIELKOGABARYTOWYCH NA WIELOOSIOWYCH CENTRACH OBRÓBKOWYCH

Nowy międzyuczelniany kierunek studiów II stopnia FECHNOLOGIE KOSMICZNE I SATELITARNE

(PG - AMG - AMWG)

MODELOWANIE I SYMULACJA UCHWYTU ZE ZMIENNĄ SZTYWNOŚCIĄ CELU NADZOROWANIA DRGAŃ PODCZAS SKRAWANIA

Redukcja drgań podczas frezowania

WYDZIAŁ MECHANICZNY

ny dużo różnych metod redukcji i nadzorowania drgań chatter, np.:

- Fazowanie krawędzi tnących
- Użycie mechanicznych tłumików
- Użycie materiałów inteligentnych
- Sterowanie optymalne
- Sterowanie aktywne
- Aktywny uchwyt
- Aktywne tłumiki
- Skrawanie ze zmienna prędkością
- Regulacja prędkości obrotowej wrzeciona z dopasowaniem do optymalnego kąta orzesunięcia fazowego w kolejnych przejściach narzędzia
- Zmienna prędkość obrotowa wrzeciona
- Narastająca prędkość obrotowa wrzeciona
- Regulacja prędkości obrotowej wrzeciona z dopasowaniem do częstotliwości drgań własnych układu

ymalna prędkość obrotowa wrzeciona

WYDZIAŁ MECHANICZNY

malna prędkość obrotowa wrzeciona

Prędkość dla której amplituda drgań chatter wynosi minimum

lniony warunek Liao-Younga

zypadku kiedy mamy tylko jedną dominującą częstotliwość drgań układu

$$\frac{zn_{\alpha}}{60} = \frac{f_{\alpha}}{0,25+k}, \quad k = 0, 1, 2, \dots$$

- określona częstotliwość drgań własnych przedmiotu obrabianego [Hz],
- poszukiwana optymalna prędkość obrotowa wrzeciona [rev/min],
- ilość ostrzy skrawających

lowy uchwyt ze zmienną sztywnością

lowy uchwyt ze zmienną sztywnością

lodel procesu skrawania

WYDZIAŁ MECHANICZNY

Model proporcjonalny

Siły skrawania zależą proporcjonalnie od zmiennych w czasie głębokości skrawania oraz grubości warstwy skrawanej

$$(t) = \begin{cases} \mu_{l} k_{dl} a_{l}(t) h_{l}(t), & a_{l}(t) > 0 \land h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 \lor h_{l}(t) \le 0, \end{cases}$$

$$(t) = \begin{cases} k_{dl} a_{l}(t) h_{l}(t), & a_{l}(t) > 0 \land h_{l}(t) > 0, \\ 0 & , & a_{l}(t) \le 0 \lor h_{l}(t) \le 0, \end{cases}$$

$$(t) = 0$$

$$a_{l}(t) = a_{pl}(t) - \Delta a_{pl}(t)$$

$$h_{l}(t) = h_{l}(t) - \Delta h_{l}(t) + h_{l}(t - \tau)$$

WYDZIAŁ MECHANICZNY

2nd natural frequency [Hz] 468.67 427.48 398.47 377.87 362.93 351.54 342.60 335.80 330.39 325.50

	Spring stiffness	1 st natural	
stotliwość drgań własnych dwóch pierwszych	[N/mm]	frequency [Hz]	
aci drgań przedmiotu obrabianego i uchwytu	14800	138.62	
	11000	131.36	
	8500	124.08	
czestotliwości zmieniaja sie wraz ze zmiana	6800	117.16	
	5600	110.78	Γ
vności spięzyny.	4700	104.83	
	4000	99.27	Γ
	3470	94.36	Γ
	3050	89.94	
	2670	85.43	Γ
			_

erwsza częstotliwość drgań własnych (110.78 z) przedmiotu obrabianego i uchwytu dla tywności sprężyny 5600 N/mm

Druga częstotliwość drgań własnych (362.93 Hz) przedmiotu obrabianego i uchwytu dla sztywności sprężyny 5600 N/mm

WYDZIAŁ MECHANICZNY

hylenie standardowe przemieszczeń [mm].

Oczekiwane optymalne pary oznaczone szarym tłem

speed		Holder spring stiffness [N/mm]					
nin]	14800	11000	8500	6800	5600	4700	4000
17651	0.002366						
16745		0.007657					
16651	0.002539	0.005380					
15869			0.002711				
15745	0.003676	0.002613	0.002671	0.002523	0.002193		
15651	0.003866						
15284					0.002547		
15047				0.002860			
14869		0.004322	0.002926	0.002787	0.002927		
14745		0.004957					
14581						0.002810	
14284					0.003170		
14047			0.006864	0.003431	0.003163		
13869			0.008736				
13784					0.003831		
13581						0.003441	
13284				0.008378	0.004034	0.004537	0.003627
13047				0.010622			
12581					0.015531	0.020466	0.031396

WYDZIAŁ MECHANICZNY

blituda pierwszej częstotliwości drgań własnych [mm] Oczekiwane optymalne pary oznaczone szarym tłem Otrzymane optymalne pary pogrubione

speed			Holder	spring stiffness [N/mm]		
nin]	14800	11000	8500	6800	5600	4700	4000
17651	0.001584						
16745		0.007286					
16651	0.000310	0.004502					
15869			0.001615				
15745	0.001045	0.000317	0.001557	0.001632	0.000666		
15651	0.001282						
15284					0.000942		
15047				0.001510			
14869		0.002834	0.000472	0.000848	0.001501		
14745		0.003316					
14581						0.001212	
14284					0.001103		
14047			0.004760	0.000747	0.005021		
13869			0.006904				
13784					0.001447		
13581						0.000357	
13284				0.006728	0.000521	0.002755	0.002057
13047				0.008114			
12581					0.005560	0.021472	0.033184

WIDENE MECHANICENT

mieszczenie (a) i widmo drgań (b) dla <u>optymalnej</u> pary prędkości obrotowej wrzeciona **n=15745 nin** i sztywności uchwytu **11000 N/mm**.

mieszczenie (a) i widmo droań (b) dla nieoptymalnej pary predkości obrotowej wrzeciona **n=14745**

mieszczenie (a) i widmo drgań (b) dla <u>nieoptymalnej</u> pary prędkości obrotowej wrzeciona **n=16745 nin** i sztywności uchwytu **11000 N/mm**

mieszczenie (a) i widmo drgań (b) dla <u>nieoptymalnej</u> pary prędkości obrotowej wrzeciona **n=15745**

mieszczenie (a) i widmo drgań (b) dla <u>nieoptymalnej</u> pary prędkości obrotowej wrzeciona **n=15745 nin** i sztywności uchwytu **14800 N/mm**

Wnioski

yfikacja właściwości dynamicznych systemu uchwyt – przedmiot obrabiany jest liwa przy zastosowaniu proponowanego nowego uchwytu

- nak zakres modyfikacji jest ograniczony
- wierdzenie przez testy modalne na prototypie uchwytu

ulacje dla różnych par sztywności uchwytu i prędkości obrotowej wrzeciona azują, że tylko w przypadku właściwie dobranych, optymalnych kombinacji tych dwóch metrów, poziom drgań jest najmniejszy.

oonowany uchwyt o zmiennej sztywności posiada potencjał do rozwiązania problemu niczonego zbioru optymalnych prędkości wrzeciona wyliczonych z warunku -Younga

ymalna prędkość obrotowa wrzeciona może być podana po ustawieniu odpowiedniej wności uchwytu

OPTYMALNE STEROWANIE PRZY ENERGETYCZNYM WSKAŹNIKU JAKOŚCI OBOTÓW MOBILNYCH PODĄŻAJĄCYCH PO OYNAMICZNIE TWORZONEJ TRAJEKTORII

Wprowadzenie

WYDZIAŁ MECHANICZNY

Przykłady zastosowania

vanje ruchem roboja jest również nazywane sterowaniem niskiego

Wprowadzenie

- ladowe metody sterowania ruchem:
- lator PID ograniczona dokładność i efektywność
- zne sieci neuronowe możliwość utraty stabilności – dokładność zależy od procesu dydaktycznego
- a rozmyta oparte na niepewnych modelach obliczeniowych
- ytmy genetyczne czasochłonność i niepewność modelu
- wanie krzepkie zbyt wysokie momenty mogą prowadzić do poślizgu
- wanie adaptacyjne system powinien być odpowiednio wzbudzany co graniczyć dokładność

Model deterministyczny

- entowana metoda sterowania bazuje na modelu deterministycznym adającym poniższe cechy:
- ametry modelu obliczeniowego są znane
- nież znane są konfiguracje modelu obliczeniowego
- owany system jest ograniczony więzami nieholonomicznymi
- ektoria ruchu jest **tworzona dynamicznie**

2-kołowy robot mobilny

Kinematyka

żenia:

- obot porusza się po płaskiej, poziomej powierzchni
- uch odbywa się bez poślizgów
- oła i inne części robota są sztywne
- nane są dwie niezależne prędkości uogólnione

ównania kinematyki prostej

$$v_{A} = \frac{\left(\dot{\alpha}_{1} + \dot{\alpha}_{2}\right)r}{2},$$
$$\dot{\beta} = \frac{\left(\dot{\alpha}_{1} - \dot{\alpha}_{2}\right)r}{2l_{1}},$$

Dynamika

WYDZIAŁ MECHANICZNY

wnania Appella-Gibbsa:

$$\frac{\partial S}{\partial \dot{\mathbf{w}}} = \mathbf{f}(t, \dot{\mathbf{q}}, \mathbf{q}) + \mathbf{B}_u(t, \dot{\mathbf{q}}, \mathbf{q})\mathbf{u}$$

$$\dot{\mathbf{q}} = \mathbf{C}_0^T(\mathbf{q})\mathbf{w} + \mathbf{G}_0(\mathbf{q})$$

funkcja Appella, wyznaczana podobnie jak energia kinetyczna, ale zamiast prędkości uogólnionych uwzględnia się przyspieszenia uogólnione

rgetyczny wskaźnik jakości

$$J(t) = \frac{1}{2} (\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}})^T \mathbf{Q} \mathbf{M} (\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}}) + \frac{1}{2} \mathbf{u}^T \mathbf{R} \mathbf{u}$$

Optymalne sygnały sterujące wartości dla każdej chwili czasu wyznaczane są w trybie *on-line* :

$$\mathbf{u} = -(\mathbf{R} + \mathbf{R}^T)^{-1} \int_{t}^{t+\Delta t} \mathbf{B}^T(\tau) \mathbf{\Phi}^T(t,\tau) d\tau \cdot \mathbf{T}^T (\mathbf{M}^T \mathbf{Q}^T + \mathbf{Q} \mathbf{M})(\dot{\mathbf{q}} - \dot{\overline{\mathbf{q}}})$$

- R macierz wpływu sygnałów sterujących
- Q macierz bezwymiarowych współczynników skalujących

2-kołowy robot mobilny

ulacja – trajektoria statyczna

nulacja – budowanie mapy

WYDZIAŁ MECHANICZNY

System wizyjny RGB-D symulacja w Gazebo

acja z ROS 2D ation Stack. enie mapy otoczenia życiu narzędzia

×. e. The second MILLIN (

Eksperyment

Eksperyment

Eksperyment

Wnioski

vukołowy robot mobilny jest przykładem silnie nieliniowego systemu z raniczeniami nieholonomicznymi.

wigacja i sterowanie ruchem tego typu systemów nie jest prosta i oże prowadzić do dużych wymagań, które w praktyce nie zawsze są ełnione. Dlatego sterowanie ruchem musi być pewne i stabilne, nawet sli występują zakłócenia wewnętrzne i zewnętrzne.

zedstawiona metoda okazała się skuteczna podczas sterowania chem w badaniach symulacyjnych jak i eksperymentalnych. Przy korzystaniu tej metody można poprawić niezawodność działania w bie autonomicznym i półautonomicznym robotów mobilnych.

ENTYFIKACJA PARAMETRÓW MODALNYCH W DZIEDZINIE CZĘSTOTLIWOŚCI Z WYKORZYSTANIEM OPTYMALIZACJI ROJU CZĄSTECZEK (ANG.: PARTICLE SWARM OPTIMISATION)

Parametry modalne

- Test modalny \rightarrow test uderzeniowy \rightarrow drgania swobodne
- Drgania składają się z wielu, wykładniczo łumionych fal sinusoidalnych

$$y(t) = \sum_{m=1}^{nm} Y_{0m} e^{-2\pi f_m \xi_m t} \sin\left(2\pi f_m \sqrt{1 - \xi_m^2} t\right) = \sum_{m=1}^{nm} Y_{0m} e^{-\beta_m t} \sin\left(\omega_m \sqrt{1 - \left(\frac{\beta_m}{\omega_m}\right)^2} t\right)$$

gdzie:

 ξ_m

 f_m

- Y_{0m} początkowa amplituda drgań postaci *m*,
 - bezwymiarowy współczynnik tłumienia postaci *m*,
 - częstotliwość drgań własnych postaci *m*,
 - czas,
- nm liczba postaci drgań.

entyfikacja - optymalizacja

entyfikacja

- Poszukiwanie nieznanych parametrów: f_m , ξ_m
- oraz dodatkowo: Y_{0m} zależne od warunków początkowych
- oże być traktowana jako problem optymalizacji
- Poszukiwanie f_m, ξ_m, Y_{0m} , które minimalizują pewną funkcję celu
- rticle Swarm Optimisation PSO optymalizacja roju cząstek
- Zaliczana do metod Sztucznej Inteligencji (R. C. Kennedy, J. Eberhart 1995)
- Poszukiwanie rozwiązania problemu poprzez odpowiednie poruszanie "cząsteczkami" (potencjalnymi rozwiązaniami) w przeszukiwanej przestrzeni
 - Każda cząsteczka:
 - ma informację o obecnym oraz dotychczasowym najlepszym znalezionym rozwiązaniu

rticle Swarm Optimisation

WYDZIAŁ MECHANICZNY

Standardowy algorytm

- Arbitralnie wybrać parametry ω , φ_p i φ_g
- Dla każdej cząsteczki i:
- inicjalizacja pozycji \mathbf{x}_i (losowy wektor o rozmiarze *d*, rozkład równomierny),
- inicjalizacja prędkości \mathbf{v}_i dla każdego \mathbf{x}_i ,
- zapamiętanie aktualnej pozycji cząstki jako najlepszą znaną pozycję $\mathbf{p}_i = \mathbf{x}_i$.
- Znajdź cząsteczkę z najlepszą wartością <u>funkcji celu</u> $f(x_i)$ i zapamiętaj tę pozycję jako najlepszą globalną pozycję roju $\mathbf{g}=\mathbf{x}_i$.
- Dla każdej cząsteczki *i*, powtarzaj aż do osiągnięcia warunku zatrzymania:
- dla każdego z wymiarów *d* wektora **x**_i wylosuj *r*_{p,d} i *r*_{g,d} (∈ <0;1>, rozkład równomierny),
- uaktualnij prędkość cząstki:

 $v_{i,d} = \omega v_{i,d} + \varphi_p r_{p,d} (p_{i,d} - x_{i,d}) + \varphi_g r_{g,d} (g_d - x_{i,d}),$

uaktualnij pozycję cząstki:

 $\mathbf{x}_i = \mathbf{x}_i + \mathbf{v}_i,$

– jeżeli $f(\mathbf{x}_i)$ ma lepszą wartość niż $f(\mathbf{p}_i)$ – zaktualizuj najlepszą pozycję cząstki $\mathbf{p}_i = \mathbf{x}_i$

ierwotne założenia

- Wykorzystanie PSO do identyfikacji parametrów wszystkich postaci drgań własnych jednocześnie
 - Jedna cząstka zawierała informacje o wszystkich postaciach
 - Problem
 - Zwykle tylko jedna, dominująca postać była identyfikowana
 - » Pozostałe były "przysłaniane" przez dominującą
 - Wolna zbieżność metody
 - Przyczyna problemów
 - Estymacja wielu postaci jest problemem wielokryterialnym
 - PSO nie jest przystosowane do rozwiązywania problemów wielokryterialnych

1-szy ETAP

nicjalizacja cząsteczki dla jednej postaci (pt. 1...3 podstawowego alg. PSO)

- Każda cząsteczka zawiera informacje pozwalające identyfikować tylko jedną postać
- każda postać identyfikowana jest niezależnie
- $f_m \in \langle 0; f_s/2 \rangle$, losowe

gdzie f_s jest częstotliwością próbkowania mierzonego sygnału drgań A

 $\xi_m \in <0.0001; 0.95>$, losowe

 $Y_{0m} \in \langle 0; 2 | Y_{max} \rangle$, losowe

gdzie: Y_{max} jest maksymalną wartością odpowiedzi zmierzonej podczas testu impulsowego początkowe prędkości, losowe

ale nie przekraczające 2% dopuszczalnego zakresu poszczególnych parametrów

WYDZIAŁ MECHANICZNY

dentyfikacja jednej postaci z wykorzystaniem PSO (pkt. 4 PSO)

- Modyfikowane parametry: Y_{0m}, f_m, ξ_m
- Funkcja celu:

$$f(\mathbf{x}_i) = \sum_{n=0}^{n_{fFFT}} (FFT_t(n) - FFT_x(n))^4$$

- amplituda widma FFT testu impulsowego, FFT,
- amplituda widma FFT odpowiedzi impulsowej FFT, wygenerowanej dla cząsteczki x_i,
- liczba próbek FFT, n_{fFFT} - numer próbki.
- Na końcu etapu 1:
- f_m zwykle zidentyfikowane z małym błędem
- Y_{0m} i ξ_m rzadko zidentyfikowane poprawnie •

Pomocnicze przenoszenie cząsteczek

Raz na 5 iteracji, najgorsza cząsteczka (z największa wartością funkcji celu) jest przenoszona

n

- Nowe parametry są kopiowane z najlepszej cząsteczki (z najmniejszą wartością funkcji celu) a dodatkowo jej ξ_m i Y_{0m} są redukowane o 50%
- Y_{0m} jest korygowane aby zachować na tym samym poziomie wartość szczytu widma przed i po modyfikacji ξ_m

WYDZIAŁ MECHANICZNY

Filtrowanie środkowoprzepustowe ($<0.8 f_m$; $1.2 f_m >$) mierzonego sygnału drgań w celu wyodrębnienia jednej postaci. Wyznaczenie wstępnie skorygowanej wartości ξ_m :

 $\xi_{mc} = \frac{\log\left(\frac{\left|A_{fmax}\right|}{\left|A_{lmax}\right|}\right)}{2\pi f_m(t_{lmax} - t_{fmax})}$

gdzie:

- A_{fmax} maksymalna amplituda pierwszego okresu funkcji sinus w wybranym przedziale czasu,
- A_{lmax} maksymalna amplituda ostatniego okresu funkcji sinus w wybranym przedziale czasu,
- t_{fmax} chwila czasu wystąpienia A_{fmax} ,
- t_{lmax} chwila czasu wystąpienia A_{lmax} .

Modyfikacja widma

- Widmo sygnału drgań z testu impulsowego jest filtrowane filtrem środkowozaporowym z częstotliwościami odcięcia <0.8 f_m ; 1.2 f_m >. Eliminuje to już zidentyfikowane postaci z dalszej identyfikacji.
- Dodatkowo, podczas identyfikacji kolejnej postaci, usunięty fragment widma nie jest brany pod uwagę przy wyznaczaniu wartości funkcji celu
- dentyfikacja kolejnej postaci
 - Punkty 1-5 powtarzane dla każdej postaci niezależnie

2-gi ETAP

nicjalizacja cząsteczek dla 2 etapu identyfikacji

- Każda cząsteczka zawiera informacje o wszystkich postaciach
- 1-sza cząsteczka tworzona poprzez połączenie najlepszych rozwiązań osiągniętych w pkt. 2 (rozwiązania bez korekcji tłumienia), prędkości ustawione jako 0
- 2-ga cząsteczka tworzona poprzez połączenie najlepszych rozwiązań osiągniętych w pkt. 2, ale $\xi_m = \xi_{mc}$ (wyznaczone w pkt. 3), prędkości ustawione jako 0 Pozostałe cząsteczki inicjalizowane standardowo, ale dla mniejszego zakresu parametrów:
- $f_m \in \pm 25\% f_m$ estymowanego w pkt. 2
- $\xi_m \in \pm 25\% \xi_{mc}$ estymowanego w pkt. 3
- $Y_{0m} \in \pm 25\% Y_{0m}$ estymowanego w pkt. 2
- 2-gi etap identyfikacji z wykorzystaniem algorytmu PSO (pkt. 4. PSO) Identyfikacja wszystkich postaci z wykorzystaniem algorytmu PSO

Przykład 1A

Dane symulowane

- 2 postacie drgań: 200 i 350 Hz

1.2	Mode number m	1	2	
1.0	Y _{0m}			
0.8	- reference	1.000	0.300	
	- identified	0.993	0.287	
	error	0.71%	4.33%	
0.2	f _m			
0.2	- reference	200.00	350.00	
-0.4	- identified	200.00	350.09	
-0.6	error	0.00%	0.03%	
-0.8	ξm			
-1.0	- reference	0.005000	0.010000	
-1.2	- identified	0.005114	0.009664	
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time[s]	error	2.27%	3.36%	

Średnie wyniki po 20 próbach

Wygenerowany sygnał

Przykład 1B

Dane symulowane

- 2 postacie (jak w 1A) + szum gaussowski

Widmo amplitudowe sygnału

lenie std. szumu lenie std. sygnału pierwszej postaci lenie std. sygnału drugiej postaci

$$\sigma_n = 0.0500$$

 $\sigma_{m1} = 0.1995$
 $\sigma_{m2} = 0.0320$

0

Przykład 1B

WYDZIAŁ MECHANICZNY

orównanie wyników

e number <i>m</i>	1	2
erence	1.000	0.300
PSO	0.983 (1.71%)	0.272 (9.23%)
erence	200.00	350.00
A	199,75 (0.13%)	350,53 (0.15%)
SCF(d)	200,02 (0.01%)	
)	194,59 (2.71%)	
ny	199,95 (0.03%)	350,01 (0.00%)
PSO	200.00 (0.00%)	350.22 (0.06%)
erence	0.005000	0.010000
A	0.002342 (53.2%)	0.016943 (69.4%)
SCF(d)	0.003631 (27.4%)	
)	0.007303 (46.1%)	
ny	0,004981 (0.38%)	0,013343 (33.4%)
PSO	0.005102 (2.04%)	0.008999 (10.0%)

Dla smiPSO – wyniki średnie po 20 próbach

Wnioski

roponowany 2-etapowy algorytm pozwolił na :

- > prawidłową identyfikację parametrów dla zadania wielokryterialnego
- uzyskanie wyników porównywalnych lub lepszych niż dla innych metod, zwłaszcza w przypadku wystąpienia szumu

lgorytm smiPSO może być z powodzeniem stosowany w zadaniach lentyfikacji modalnej

- Vady i ograniczenia
 - W obecnej postaci przystosowany tylko do zadań identyfikacji SISO dla obiektów o wyraźnie odseparowanych postaciach drgań (ze względu na filtrację pasmową)

WYDZIAŁ MECHANICZNY

Dziękuję za uwagę