Kontakt:
- email:
- jerdembs@pg.edu.pl
Zajmowane stanowiska:
Adiunkt
- miejsce pracy:
- Katedra Inteligentnych Systemów Interaktywnych
Budynek A Wydziału Elektroniki, Telekomunikacji i Informatyki, EA 422
- telefon:
- (58) 347 13 78

Publikacje:
-
Publikacja
- SENSORS - Rok 2025
A serious limitation to the deployment of IoT solutions in rural areas may be the lack of available telecommunications infrastructure enabling the continuous collection of measurement data. A nomadic computing system, using a UAV carrying an on-board gateway, can handle this; it leads, however, to a number of technical challenges. One is the intermittent collection of data from ground sensors governed by weather conditions for...
Pełny tekst do pobrania w portalu
-
Publikacja
- Rok 2022
Detection and recognition of graphic objects in images are of great and growing importance in many areas, such as medical and industrial diagnostics, control systems in automation and robotics, or various types of security systems, including biometric security systems related to the recognition of the face or iris of the eye. In addition, there are all systems that facilitate the personal life of the blind people, visually impaired...
-
Publikacja
- Rok 2021
W pracy opisano metode Adaboost w zastosowaniu do detekcji obiektów graficznych, takich jak twarze lub rozpoznawania np. osób na podstawie obrazu twarzy. Przedstawiono podstawy algorytm, wersje kaskadowa, schemat przepływu danych i sterowania w zadaniu detekcji twarzy oraz sposoby adaptacji tej metody do problemów wieloklasowych. Opisano równiez zbiory cech obrazów, takie jak HAAR, LBP czy HOG stosowane w zadaniach detekcji i rozpoznawania...
Pełny tekst do pobrania w serwisie zewnętrznym
-
Publikacja
- Rok 2020
This work describes a bee detection system to monitor bee colony conditions. The detection process on video images has been divided into 3 stages: determining the regions of interest (ROI) for a given frame, scanning the frame in ROI areas using the DNN-CNN classifier, in order to obtain a confidence of bee occurrence in each window in any position and any scale, and form one detection window from a cloud of windows provided by...
Pełny tekst do pobrania w portalu
-
Publikacja
- Rok 2019
This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
Pełny tekst do pobrania w portalu